
LG 467 Computers in Linguistics

[1-2021] Python 2: Python Basics

Sakol Suethanapornkul

! ! "

mailto:suesakol@staff.tu.ac.th
https://github.com/suesakol
https://sakol-suethana.netlify.app

Recap

2

Previously…

3

• Anaconda Navigator

• Spyder (iPython Interpreter and Editor)

• Interpreter: try codes and see results immediately

• Editor: create and edit codes

Previously…

4

Python as a calculator (i.e., arithmetic)

5 + 3
7 - 2
4 / 2
7 // 2
7 % 2
4 ** 2
5 + 3 * 8
4 - 2 / 3
(5 + 3) * 8
5 + (3 * 8)
4 - (2 / 3)

Code 0.1

Previously…

5

We created a class folder and learned how to save a file (.py)

We saw how to create variables and how to call functions

greet = "Hello, world!"
Code 0.2

print(greet)
Code 0.3

It’s time to dive deeper!

Overview

6

What does a computer do?
Fundamentally, a computer

• performs (trillions of) operations

• remembers results

7

But computers only know what you tell them!

• You can tell computers what to do with a program

• Programs are like a recipe (a set of ''how-to'' instructions)

Adapted from: MIT’s 6.0001 online lecture

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-slides-code/MIT6_0001F16_Lec1.pdf

What is needed in a recipe?
Ingredients (for 12 cookies)

8 Adapted from: Tasty’s chocolate cookie recipe

1. Whisk together the sugars, salt, and butter

2. Whisk in the egg and vanilla

3. Sift in the flour and baking soda

4. Then fold the mixture with a spatula

5. Fold in the chocolate chunks

6. chill the dough for at least 30 minutes

7. Scoop the dough onto a baking sheet

½ cup granulated sugar (100 g)

¾ cup brown sugar (165 g), packed

1 teaspoon salt

½ cup unsalted butter (115 g), melted

1 egg

1 teaspoon vanilla extract

1¼ cups all-purpose flour (155 g)….

Preparation

https://tasty.co/recipe/the-best-chewy-chocolate-chip-cookies

What is needed in a recipe?
• A sequence of simple steps

• Flow of control process that specifies when each step is executed

• A means of determining when to stop

9 Adapted from: MIT’s 6.0001 online lecture

1 + 2 + 3 = an algorithm

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-slides-code/MIT6_0001F16_Lec1.pdf

A recipe

10

txt = '''Beautiful is better than ugly. Explicit is better than
implicit. Simple is better than complex. Complex is better than
complicated. Flat is better than nested.'''

txt_ls = txt.split()

l = []

for word in txt_ls:
 if len(word) > 7:
 l.append(word)

#or equivalently
m = [word for word in txt_ls if len(word) > 7]

print(l)
print(m)

Code 1.1

Python Basics

11

Data: types, values, variables, names

12

Python data are objects

• Python bundles a value with a type of that value → an object

7 Int

Analogy:

Value Type

Data: types, values, variables, names

13

Interpreter: type()

type(-7)
type(7 * 2)
type(10e2)

type(3.1415)

type("cool")

type(True)

Code 1.2

Question: How many types are there?

Data: types, values, variables, names

14

Values tell you something about types

5; 32; 45000 integers type(5) int

18.25; 3.1415 floating points type(3.1415) float

True; False Booleans type(True) bool

→

→

→

"cat"; "girls" → strings type("cat") str

Data: types, values, variables, names

15

Type conversion: str(), int(), float(), bool()

str(7)
int(3.83)
float(12)

str(True)
int(True)

Will this work?
int("cat")

Code 1.3

NOTE: For booleans, True = 1; False = 0

Data: types, values, variables, names

16

We'd like to "save" data objects for later use. Let’s create variables

• Variables = names for data objects

num = 5
an1 = 'cat'
an2 = "dog"
an3 = '''horse'''

pi_approx = 3.14159

Code 1.4

what's going to happen here?
num =

Code 1.5

Data: types, values, variables, names

17

Assignment attaches a name to an object

7 Int

Analogy:

Value Type

Num

num = 7
Code 1.6

Data: types, values, variables, names

18

Question: Which of the following are variable names in Python?

name = 'sakol'
nms_inst = 'sakol'
nms.inst = 'sakol'
names1 = 'sakol'
1names = 'sakol'
NameInstr = 'sakol'
names@1 = 'sakol'
Name_Inst = 'sakol'

Code 1.7

variable names can’t be reserved words. check:
help("keywords")

Code 1.8

Data: types, values, variables, names

19

PEP-8: style guide for Python code (the Pythonic way)

1. Variables and functions should have informative, lower case names:
• ✔ word_count ✘ wrdct

• ✔ find_verbs() ✘ Find_Verbs() or Fnd_vrb()

2. White space around operators
• ✔ word_count = word_count + 1 ✘ word_count=word_count+1

3. Line length should be 79 characters maximum

Data: types, values, variables, names

20

Copying: assigning two names to the same object

pounds = 150
lbs = pounds

pounds = 175

pounds # or print(pounds)
lbs # which value?

Code 1.9

Data: types, values, variables, names

21

Copying: assigning two names to the same object

150 Int

Analogy:

Value Type

pounds

lbs

Data: types, values, variables, names

22

But beware. Lists are mutable.

names = ['prayut', 'anutin', 'somsak', 'tummanat']
cabinet = names

names[0] = 'apisit'

names # or print(names)
cabinet

Code 1.10

We'll talk about lists in future classes!

String variables

23

As linguists, we work with texts. Python handles texts as strings.

• A string is a sequence of characters

Create string variables
name = 'Sakol'
store = "Teddy's bigger burger"
poem = '''Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth'''

Code 1.11

String variables

24

Escape characters: Precede characters with \ to achieve effects

\n for newlines
print("cars, \nMars, \nand some vars")

\t for tabs
print("cars, \tMars, \tand some vars")

\" to have double quotes inside double quotes
print("He said: \"I don't know\"")

Code 1.12

String concatenation

25

We can combine and duplicate string variables

Let's start with the basics
x = 10
x + 3
x ** 3

How about strings
rs = "npr"
tv = "pbs"
rs + tv
rs + " " + tv
rs * 3
rs / 3 # What's going to happen here?

Code 1.13

Aside: print()

26

The print() function is meant for human output

• print() adds spaces and newlines

print() a function with arguments inside parentheses
print(rs, tv)
print(rs,tv)

This is similar to rs + tv
print(rs + tv)

Build custom message inside print()
print("I get my news from", rs, "and", tv)

Code 1.14

String indexing & slicing

27

To extract elements from a string variable, specify offsets inside []

String: i P h o n e _ 1 2

Offset: 0 1 2 3 4 5 6 7 8

−4 −3 −2 −1…

Here’s in code
phone = "iPhone 12"
phone[0]
phone[3]
phone[-1]

Code 1.15

−5

String indexing & slicing

28

To extract a substring, we can add more information inside []

• [start: end: step]

Start is inclusive but end is exclusive (x-1)
phone = "iPhone 12"
phone[0:3]
phone[0:]
phone[:3]
phone[-4:-1]
phone[-4:]
phone[2:-2]
phone[0:7:2]
phone[::-1]

Code 1.16

String methods

29

Useful built-in functions that work specifically with string variables

.split() returns a list
poem = '''Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth'''

poem.split('\n')
poem.split(' ') # equivalent to poem.split()

Code 1.17

A more sophisticated way to split strings later on in the course

String methods

30

Useful built-in functions that work specifically with string variables

fairy = "Once upon a time, in a far, far away land.
There's a charming princess."

Case
fairy.lower()
fairy.upper()
fairy.capitalize()

Replacing: ('old', 'new')
fairy.replace('time', 'century')

Assign to the original variable
fairy = fairy.upper()

Code 1.18

String methods

31

Useful built-in functions that work specifically with string variables

String multiple methods together
fairy.lower().replace('time', 'century')

But watch out replace() needs an exact match
fairy.upper()
fairy.upper().replace('time', 'century')
fairy.upper().replace('A', ‘AN’)

This isn't efficient but does the job
fairy.replace('.', '!').replace(',', ';')

Code 1.18

[Continued]

String methods

32

Useful built-in functions that work specifically with string variables

Frequency counts (exact match)
fairy.count('far')
fairy.count('Far') # Different from the above

Remove leading & trailing spaces
ad = " Privacy, simplified "
ad.strip()

curse = "What the ****!!!?"
curse.strip('*!?')

Code 1.18

[Continued]

String methods

33

Lots of string methods we haven’t covered, but before we move on

Because these methods work with strings...
'Once upon a time, in a far, far away
land'.count('far')

'''Two roads diverged in a wood, and I-
I took the one less traveled by,
And that has made all the
difference.'''.lower().split()

And you can embed everything inside print()
print(fairy.lower().split())
print('Once upon a time'.lower().split())

Code 1.18

[Continued]

More functions

34

Plenty of built-in functions: len(), print(), input()

len(fairy)

input() get users to input data into Python
age = input("Enter your age: “)

print("How old are you? Enter your age")
x = input()

input() and print() are basic I/O in Python
age = input("Enter your age: “)
print("You're", age, "years old!")

Code 1.19

For more information

35

For more string methods:

• Chapter 5 in Lubanovich (2020) Introducing Python

• W3 Schools' website

https://www.w3schools.com/python/python_ref_string.asp

Our plan next week!

36

Language and Computer, Chapter 3

• Sections 3.3 and 3.4 (Tokenization: What is it? What is it for?)

