LG 467 Computers In Linguistics

[1-2021] Topic 4: Corpus Exploration

Sakol Suethanapornkul

R eXo,

mailto:suesakol@staff.tu.ac.th
https://github.com/suesakol
https://sakol-suethana.netlify.app

Previously...

Corpus is a principled collection of naturally occurring texts

Corpus linguistics is a research approach (Biber & Reppen, 2015)
- va methodological & analytical tool for linguistic analysis

« X a hyphenated domain of enquiry (cf. sociolinguistics,
psycholinguistics)

2 Biber & Reppen (2015) Cambridge handbook of English corpus linguistics

Previously...

Corpus contains nothing but frequency data (Gries, 2010)

Frequencies of occurrence

« how frequent are morphemes, words, patterns, abstract constructions
in (part of) corpus

» Frequency list(s) Types, tokens, Hapaxes

Frequencies of co-occurrence

« how often do elements co-occur with another element from this set
or position In a text

3 Gries (2010) Useful statistics for corpus linguistics. In A mosaic of corpus linguistics

Previously...

List comprehension: Filtering elements from a list

Code 6.1
[x for x iny if...]

doubt = "I doubt if this will work".split()

[w for w in doubt]
[w for w in doubt if 'w' in w]
[w for w in doubt if len(w) >= 4]

[f(x) for x in y if...]

[w.upper() for w in doubt]

[len(w) for w in doubt]

[len(w) for w in doubt if len(w)>2 and w.startswith(w)]

Practice

Let's head over to Peter Norvig's website. Download a list of English
words from enablel. txt.

Code 6.2
Open a file with open()

i

Call open() before reading in files
f = open('enablel.txt') # or
f = open('Files/enablel.txt")

txt = f.read()
f.close()

words = txt.split()
print(words[0:51])

http://norvig.com/ngrams/

Aside: read () vs.readlines ()

read () reads in an entire file at once & returns a string. Conversely,
readlines () reads each line & returns a list of one-line strings.

Code 6.3
f = open('enablel.txt"')

txt = f.read()
txtl = f.readlines()

f.close()

print(txt[0:11])
orint(txt1[0:11])

Practice

Use "words" to answer the following questions:

1. What are the last ten words in the list?

2. What are the ten longest words?

3. Select words that start with 'a' and whose length > 15
4. Get word length of each word in the entire list

5. Get words that begin with and end with 'k’

Code 6.4

Close files automatically

This may come in handy when you have a more complex code:

Code 6.5
with open('enablel.txt') as f:

txt = f.read()
words = txt.split()

For a more detailed explanation on wi th, check out Lubanovic
(2020, p. 256)

8

Frequency counts

Now, let's get back to the Brown Corpus. NLTK offers an off-the-
shelf frequency counts:

| Code 6.6
from nltk.book import FreqDist

from nltk.corpus import brown

If you get an error
import nltk
nltk.download(“book”)

brown.words(‘ca0l")
FregDist(words)

words
wlist

Frequency counts

You can obtain token frequencies in a text file with:

Code 6.6

print(wlist) [Continued]

<FregDist with 848 samples and 2242 outcomes>

wlist.most common(10)

[('the', 127), ('.', 88), (',', 87), ('of', 65),
('to', 55), ('a', 50), ('and', 40), ('in', 39), (' ',
34)’ (IIIIII’ 33)]

wlist.max()
wlist.N()

10

Frequency counts

You can obtain token frequencies in a text file with:

Code 6.6

Reference a key-value pair with vars 1n a for-loop ‘Continued]

print("words,", "counts")
for 1, j in wlist.most_common() :
print(str(i) + ", " + str(j))

wlist.most common(15)

wlist.plot()
wlist.plot(cumulative = True)

1

Frequency counts

So, before we jump ahead and count tokens, it's important to:

Code 6.7
words = [w.lower() for w in words]
wlist2 = FregDist(words)
print(wlist2)

<FregDist with 800 samples and 2242 outcomes>

wlist2.most common(10)

[('the', 155), ('.', 88), (',', 87), ('of', 65),
('"to', 55), ('a', 54), ('in', 40), ('and', 40), (' ',
34)’ (IIIIII’ 33)]

12

Frequency counts

The most frequent word in the list is "the."

» Does this word help us decipher a topic?

« Does this word provide useful information about the text?
Scroll further down through the list.

« What are some other "empty" words?

« What should we do with these words?

13

Frequency counts

We can remove stop words (commonly occurring words such as a,
an, the, of, in, etc.) from the list before counting

Code 6.8

stop = ['a', 'an', 'the', 'in', 'on', 'at', 'to',
'for', 'of', 'and', ‘."']

words_sm = [w for w in words if w not in stop]

wlist3 = FregDist(words_sm)
wlist3.most common(10)

14

Frequency counts

NLTK provides a list of stop words that does a better job than ours.
Import it fromnltk.corpus:

| Code 6.8
from nltk.corpus import stopwords

print(stopwords.words('english'))

stopwords = stopwords.words(‘english')
words_sm2 = [w for w in words if w not in stopwords]
wlist4 = FregDist(words_sm2)

15

Frequency counts

We can calculate a type-token ratio (TTR) of the particular file we've
been working on in the Brown Corpus

Code 6.9
len(words sm2)

len(set(words sm2))

Type—-token ratio
len(set(words_sm2))/len(words_sm2)

Question: Is words sm2 the right one for the calculation?

16

Frequency counts

What gets counted (and how) can yield different numbers:
- walk-walked-walks: one type or three different types?
. if you're interested in word learning, one lemma type (walk)
. if you're interested in learning of forms, three types

« Content vs. function words (and punctuation marks)

Questions you ask typically dictate analysis. So, think carefully

17

Frequency counts

NLTK comes bundled with a few novels; we'll use them to practice
calculating TTR:

| Code 6.10
print(textl)

print(text2)
print(text3)
print(text2[:31])
print(text3[:31])

len(set(text2))/len(text2)
len(set(text3))/len(text3)

Question: Calculate TTR of text1. Is Moby Dick most diverse?

18

Frequency counts

TTR is affected by text size (i.e., how many tokens in a text?)
» Consider the following cases:
« #1: Type =12; Tokens=24 TTR=12/24 =0.5
e #2: Type =12; Tokens =200 TTR =12/200 = 0.06
» Types don't grow linearly with text size

- TTR is meaningful when you have comparatively sized texts

19

Aside: defining functions

There was a lot of typing with our calculation of TTR. We can define
a function to automate this calculation:

Keyword Name Parameters inside ()

\ T / Code 6.11

def ttr(lst):
result = len(set(lst))/len(1lst)
return round(result, 3)

ttr(textl)\

What is returned from the function

20

Aside: defining functions

A function can take multiple arguments. Plus, you can add a
docstring that tells others what this function does

Code 6.11
def ttr(lst, digits):

"HHCompute type-token ratio on a list of strings,
accepts one list and digits to round."""

result = len(set(1lst))/len(1lst)

return round(result, digits)

ttr(textl, 3)
ttr(text2, 4)
help(ttr)

21

N-grams

Language isn't just a bunch of words randomly strung together

Try this:

| don't know when I'll be back...............

» Most people might say: again or here again but not yesterday

« We can think of this as estimating the likelihood of word w
given some history h

22

N-grams

We don't have a big enough corpus to estimate every possibility of

every continuation. There's a clever way to go around this problem:
n-grams (or chunks)

N-grams are units of n sequences
» unigrams, bigrams, trigrams, four-grams
- character-level: fish (f,i,s,h) (fi,is, sh) (fis, ish)

- word-level: Rose is red (rose, is, red) (rose is, is red)

23

N-grams and probabilities

Thinking of language as units of n sequences allows us to ask:

How likely is it for sequences of characters to appear?:
- th ng kn kw qt tr pn np
How likely is it for sequences of words to appear?:

« boythe planof goto youare thatthe

We can use conditional probability to figure this out

24

Samples of
n-grams
from COCA

25

N-grams and probabilities

407044 more
211840 may
176666 most
172563 me
128502 must
128363 make
127343 might
123719 many
111762 make
93378 may
88996 much
88282 make
83028 me
82497 my
78572 make
77539 me
74659 much
72505 may
72283 made
72116 members
71425 me
71125 might
69337 my

than
be
of
to
be

be
of
it
have
of
the

life
sure
that
more
not
a

of
and
have
own

80495
52289
45925
40347
32434
31906
29046
26752
26679
25762
23967
20715
20432
18151
16574
15758
15739
15249
14593
14309
14093
13432
13276
13095
12977
12852

most
more
many

members
member

much
may

more
more

middle

men
make
may
might
many
more
must
more
may
more
most
me
much
my
more
may

of
than
of
of
of
of
not
and
likely
of
and
sure
have
have
of
than
have
of
be
than
of
in
of
name
or

be

the

the
the
the
the
be
more
to
the
women
that
been
been
them
one
been

the
them
the
a

is
less
the

9434
6404
6347
5935
5514
4879
4434
4416
4413
4378
4120
3730
3190
2937
2889
2888
2877
2857
2836
2836
2804
2668
2603
2571
2441
2439
2428
2400
2378

most
might
middle
may
more
may
more
more
more
my
more
my
more
make
more
more
more
make
me
much
may
make
men
most
martin
made
most
made
may

of

be

of

or
likely
be
than
than
than

husband

than
wife
than
it
than
than
often
sure
tell
for
not

a

and

of
luther
it
people
it

not

the
able
the
may
to
able
half
a

a
and
a
and
a

to
just
any
than
that
you

joining

be
lot
women
the
king
clear
do
to

be

time
to
night
not

be

to

of
decade
year

i

few

i
dozen
the

a
other
not
the
something
us

the

of

who
peaple
jr
that
n't
the
able

Source: https://www.ngrams.info/samples_words.asp

https://www.ngrams.info/samples_words.asp

N-grams and probabilities

Basic idea:
« CH: given t, what's the likelihood of the next character being h?

- WD: given the, what's the likelihood of the next word being boy?

POty 1) = ot
arkov assumption W I Wa_1 W)

N-grams are fundamental to many applications in NLP (spell
checker, grammar checker, machine translation)

26

N-grams in NLTK

We can generate bigram (or any n-gram) counts with NLTK:

| Code 6.12
import nltk

nltk.bigrams(text1)
list(nltk.bigrams(textl))

nltk.ngrams(textl, 2)
list(nltk.ngrams(textl, 2))

list(nltk.ngrams(textl, 2))
FregDist(bigrams)

bigrams
bicount

27

Creating your own corpus with NLTK

You can "build" your own corpus with NLTK:

 http://www.nltk.org/book/ch02.html#loading-your-own-corpus

Make sure you have plain texts (.txt)

» PlaintextCorpusReader works with plain text files

FregDist and its related functions will work with your corpus

28

http://www.nltk.org/book/ch02.html#loading-your-own-corpus

Our plan next week...

» Part-of-speech (POS) tagging

« POS tags

» Reading

29

« NLTK Chapter 5

