LG 467 Computers in Linguistics

[1-2021] Topic 4: Corpus Exploration

Sakol Suethanapornkul

Previously...

Corpus is a principled collection of naturally occurring texts

- Corpus linguistics is a research approach (Biber & Reppen, 2015) Va methodological & analytical tool for linguistic analysis • X a hyphenated domain of enquiry (cf. sociolinguistics,
 - psycholinguistics)

Biber & Reppen (2015) Cambridge handbook of English corpus linguistics

Previously...

Corpus contains nothing but frequency data

Frequencies of occurrence

- in (part of) corpus
- Frequency list(s)

Frequencies of co-occurrence

or position in a text

Gries (2010) Useful statistics for corpus linguistics. In A mosaic of corpus linguistics

(Gries, 2010)

how frequent are morphemes, words, patterns, abstract constructions

Types, tokens, Hapaxes

how often do elements co-occur with another element from this set

Previously...

List comprehension: Filtering elements from a list

[x for x in y if...] doubt = "I doubt if this will work".split() [w for w in doubt] [w for w in doubt if 'w' in w] [w for w in doubt if len(w) >= 4]

[f(x) for x in y if...] [w.upper() for w in doubt] [len(w) for w in doubt] [len(w) for w in doubt if len(w)>2 and w.startswith(w)]

Practice

Let's head over to Peter Norvig's <u>website</u>. Download a list of English words from enable1.txt.

Open a file with open()
Call open() before reading in files
f = open('enable1.txt') # or
f = open('Files/enable1.txt')

txt = f.read()
f.close()

words = txt.split()
print(words[0:51])

read() reads in an entire file at once & returns a string. Conversely, readlines() reads each line & returns a list of one-line strings.

> f = open('enable1.txt') txt = f.read() txt1 = f.readlines()

f.close()

print(txt[0:11]) print(txt1[0:11])

Aside: read() vs. readlines()

Practice

Use "words" to answer the following questions:

- # 1. What are the last ten words in the list?
- # 2. What are the ten longest words?
- # 3. Select words that start with 'a' and whose length > 15
- # 4. Get word length of each word in the entire list
- # 5. Get words that begin with and end with 'k'

Close files automatically

This may come in handy when you have a more complex code:

with open('enable1.txt') as f: txt = f.read() words = txt.split()

For a more detailed explanation on with, check out Lubanovic (2020, p. 256)

Now, let's get back to the Brown Corpus. NLTK offers an off-theshelf frequency counts:

from nltk.book import FreqDist
from nltk.corpus import brown

If you get an error
import nltk
nltk.download("book")

words = brown.words('ca01')
wlist = FreqDist(words)

You can obtain token frequencies in a text file with:

```
print(wlist)
# <FreqDist with 848 samples and 2242 outcomes>
```

```
wlist.most_common(10)
34), ("''', 33)]
```

wlist.max() wlist.N()

Code 6.6 [Continued]

[('the', 127), ('.', 88), (',', 87), ('of', 65), ('to', 55), ('a', 50), ('and', 40), ('in', 39), ('``',

You can obtain token frequencies in a text file with:

print("words,", "counts") for i, j in wlist.most_common(): print(str(i) + ", " + str(j))

wlist.most_common(15)

wlist.plot() wlist.plot(cumulative = True)

Reference a key-value pair with vars in a for-loop

Code 6.6 [Continued]

So, before we jump ahead and count tokens, it's important to:

words = [w.lower() for w in words] wlist2 = FreqDist(words) print(wlist2) # <FreqDist with 800 samples and 2242 outcomes> wlist2.most_common(10) # [('the', 155), ('.', 88), (',', 87), ('of', 65), 34), ("''', 33)]

- The most frequent word in the list is "the."
 - Does this word help us decipher a topic?
 - Does this word provide useful information about the text?
- Scroll further down through the list.
 - What are some other "empty" words?
 - What should we do with these words?

an, the, of, in, etc.) from the list before counting

- stop = ['a', 'an', 'the', 'in', 'on', 'at', 'to', 'for', 'of', 'and', '.'] words_sm = [w for w in words if w not in stop] wlist3 = FreqDist(words_sm)
- wlist3.most_common(10)

We can remove stop words (commonly occurring words such as a,

Import it from nltk.corpus:

from nltk.corpus import stopwords print(stopwords.words('english'))

- stopwords = stopwords.words('english')
- wlist4 = FreqDist(words_sm2)

NLTK provides a list of stop words that does a better job than ours.

```
words_sm2 = [w for w in words if w not in stopwords]
```

We can calculate a type-token ratio (TTR) of the particular file we've been working on in the Brown Corpus

len(words_sm2) len(set(words_sm2))

Type-token ratio len(set(words_sm2))/len(words_sm2)

Question: Is words_sm2 the right one for the calculation?

What gets counted (and how) can yield different numbers:

- walk-walked-walks: one type or three different types?
 - if you're interested in word learning, one lemma type (walk)
 - if you're interested in learning of forms, three types
- Content vs. function words (and punctuation marks)

Questions you ask typically dictate analysis. So, think carefully

NLTK comes bundled with a few novels; we'll use them to practice calculating TTR:

print(text1) print(text2) print(text3) print(text2[:31]) print(text3[:31])

len(set(text2))/len(text2) len(set(text3))/len(text3)

Question: Calculate TTR of text1. Is Moby Dick most diverse?

TTR is affected by text size (i.e., how many tokens in a text?)

- Consider the following cases:
 - #1: Type = 12; Tokens = 24 TTR = 12/24 = 0.5
 - #2: Type = 12; Tokens = 200 TTR = 12/200 = 0.06
- Types don't grow linearly with text size
- TTR is meaningful when you have comparatively sized texts

Aside: defining functions

a function to automate this calculation:

There was a lot of typing with our calculation of TTR. We can define

Aside: defining functions

A function can take multiple arguments. Plus, you can add a **docstring** that tells others what this function does

> def ttr(lst, digits): accepts one list and digits to round.""" result = len(set(lst))/len(lst) return round(result, digits)

ttr(text1, 3) ttr(text2, 4) help(ttr)

```
"""Compute type-token ratio on a list of strings,
```

N-grams

Language isn't just a bunch of words randomly strung together

Try this:

- given some history h

I don't know when I'll be back

• Most people might say: again or here again but not yesterday • We can think of this as estimating the likelihood of word w

N-grams

n-grams (or **chunks**)

N-grams are units of *n* sequences

- unigrams, bigrams, trigrams, four-grams

 - character-level: fish (f, i, s, h) (fi, is, sh) (fis, ish)• word-level: Rose is red (rose, is, red) (rose is, is red)

We don't have a big enough corpus to estimate every possibility of every continuation. There's a clever way to go around this problem:

N-grams and probabilities

Thinking of language as units of n sequences allows us to ask:

How likely is it for sequences of characters to appear?:

• th ng kn kw qt tr pn np

How likely is it for sequences of words to appear?:

• boy the plan of go to you are

We can use conditional probability to figure this out

- - that the

N-grams and probabilities

Samples of n-grams from COCA

407044	more	than	80495
211840	may	be	52289
176666	most	of	45925
172563	me	to	40347
128502	must	be	32434
128363	make	a	31906
127343	might	be	29046
123719	many	of	20/52
111762	make	it	25762
93378	mav	have	23967
88996	much	of	20715
88282	make	the	20432
83028	me	a	18151
82/07	mu	life	16574
02497	my	TTLE	15758
/85/2	таке	sure	15739
77539	me	that	15249
74659	much	more	14593
72505	may	not	14309
72283	made	a	14093
72116	members	of	13432
71425	me	and	13276
71125	might	have	13095
(1123		nuve	12977
0933/	my	own	12852

most	of	the	9434	most	of	the	time
more	than	a	6404	might	be	able	to
many	of	the	6347	middle	of	the	night
momborg	of	the	5935	may	or	may	not
members	01 of	the	5514	more	likely	to	be
member	or	the	4879	may	be	able	to
much	of	the	4434	more	than	half	of
may	not	be	4416	more	than	a	decade
more	and	more	4413	more	than	a	year
more	likely	to	4378	my	husband	and	i
middle	of	the	4120	more	than	a	few
men	and	women	3730	my	wife	and	i
make	sure	that	3190	more	than	a	dozen
may	have	been	2937	make	it	to	the
might	have	been	2889	more	than	just	a
migne	nave	been	2888	more	than	any	other
many	OI	them	2877	more	often	than	not
more	than	one	2857	make	sure	that	the
must	have	been	2836	me	tell	you	somethi
more	of	a	2836	much	for	joining	us
may	be	a	2804	may	not	be	the
more	than	the	2668	make	a	lot	of
most	of	them	2603	men	and	women	who
me	in	the	25/1	most	or	the	peop⊥e
much	of	2	2441	martin	luther	King	jr
much	01	ic	2439	made	1t	clear	tnat
шу	name	15	2428	most	peop⊥e	ao	n t
more	or	Less	2400	made	lt	το ha	the
may	be	the	23/8	may	not	be	apie

Source: https://www.ngrams.info/samples_words.asp

N-grams and probabilities

Basic idea:

- CH: given t, what's the likelihood of the next character being h? • WD: given the, what's the likelihood of the next word being boy?

Markov assumption

 $p(w_n | w_{n-1})$

N-grams are fundamental to many applications in NLP (spell) checker, grammar checker, machine translation)

$$) = \frac{C(w_{n-1}w_n)}{C(W_{n-1})}$$

N-grams in NLTK

We can generate bigram (or any n-gram) counts with NLTK:

import nltk

nltk.bigrams(text1)

list(nltk.bigrams(text1))

nltk.ngrams(text1, 2) list(nltk.ngrams(text1, 2))

bigrams = list(nltk.ngrams(text1, 2)) bicount = FreqDist(bigrams)

Creating your own corpus with NLTK

You can "build" your own corpus with NLTK:

<u>http://www.nltk.org/book/ch02.html#loading-your-own-corpus</u>

Make sure you have plain texts (.txt)

PlaintextCorpusReader works with plain text files

FreqDist and its related functions will work with your corpus

Our plan next week...

- Part-of-speech (POS) tagging
 - POS tags
- Reading
 - NLTK Chapter 5

