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Corpus is a principled collection of naturally occurring texts

Corpus linguistics is a research approach       (Biber & Reppen, 2015) 

• ✔a methodological & analytical tool for linguistic analysis 

• ✘ a hyphenated domain of enquiry (cf. sociolinguistics, 
psycholinguistics) 

Biber & Reppen (2015) Cambridge handbook of English corpus linguistics 
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Corpus contains nothing but frequency data             (Gries, 2010)

Frequencies of occurrence  

• how frequent are morphemes, words, patterns, abstract constructions 
in (part of) corpus  

• Frequency list(s)

Gries (2010) Useful statistics for corpus linguistics. In A mosaic of corpus linguistics

Types, tokens, Hapaxes

Frequencies of co-occurrence  

• how often do elements co-occur with another element from this set 
or position in a text
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List comprehension: Filtering elements from a list

# [x for x in y if...] 
doubt = "I doubt if this will work".split() 

[w for w in doubt] 
[w for w in doubt if 'w' in w] 
[w for w in doubt if len(w) >= 4] 

# [f(x) for x in y if...] 
[w.upper() for w in doubt] 
[len(w) for w in doubt] 
[len(w) for w in doubt if len(w)>2 and w.startswith(w)]

Code 6.1
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Let's head over to Peter Norvig's website. Download a list of English 
words from enable1.txt.

# Open a file with open() 
# Call open() before reading in files 
f = open('enable1.txt')         # or 
f = open('Files/enable1.txt') 

txt = f.read() 
f.close() 

words = txt.split() 
print(words[0:51])

Code 6.2

http://norvig.com/ngrams/


Aside: read() vs. readlines()
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read() reads in an entire file at once & returns a string. Conversely, 
readlines() reads each line & returns a list of one-line strings.

f = open('enable1.txt')  
txt = f.read() 
txt1 = f.readlines() 

f.close() 

print(txt[0:11]) 
print(txt1[0:11])

Code 6.3



Practice
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Use "words" to answer the following questions:

# 1. What are the last ten words in the list? 

# 2. What are the ten longest words?  

# 3. Select words that start with 'a' and whose length > 15 

# 4. Get word length of each word in the entire list 

# 5. Get words that begin with and end with 'k'

Code 6.4



Close files automatically
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This may come in handy when you have a more complex code:

with open('enable1.txt') as f: 
    txt = f.read() 
    words = txt.split()

Code 6.5

For a more detailed explanation on with, check out Lubanovic 
(2020, p. 256)
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Now, let's get back to the Brown Corpus. NLTK offers an off-the- 
shelf frequency counts:

from nltk.book import FreqDist 
from nltk.corpus import brown 

# If you get an error 
import nltk 
nltk.download(“book”) 

words = brown.words(‘ca01') 
wlist = FreqDist(words)

Code 6.6
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You can obtain token frequencies in a text file with:

print(wlist) 
# <FreqDist with 848 samples and 2242 outcomes> 

wlist.most_common(10) 
# [('the', 127), ('.', 88), (',', 87), ('of', 65), 
('to', 55), ('a', 50), ('and', 40), ('in', 39), ('``', 
34), ("''", 33)] 

wlist.max() 
wlist.N()

Code 6.6

[Continued]
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You can obtain token frequencies in a text file with:

# Reference a key-value pair with vars in a for-loop 
print("words,", "counts") 
for i, j in wlist.most_common(): 
    print(str(i) + ", " + str(j)) 

wlist.most_common(15) 

wlist.plot() 
wlist.plot(cumulative = True)

Code 6.6

[Continued]
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So, before we jump ahead and count tokens, it's important to:

words  = [w.lower() for w in words] 
wlist2 = FreqDist(words) 

print(wlist2) 
# <FreqDist with 800 samples and 2242 outcomes> 

wlist2.most_common(10) 
# [('the', 155), ('.', 88), (',', 87), ('of', 65), 
('to', 55), ('a', 54), ('in', 40), ('and', 40), ('``', 
34), ("''", 33)]

Code 6.7
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The most frequent word in the list is "the."  

• Does this word help us decipher a topic? 

• Does this word provide useful information about the text? 

Scroll further down through the list.  

• What are some other "empty" words? 

• What should we do with these words?



Frequency counts
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We can remove stop words (commonly occurring words such as a, 
an, the, of, in, etc.) from the list before counting

stop = ['a', 'an', 'the', 'in', 'on', 'at', 'to', 
'for', 'of', 'and', ‘.'] 

words_sm = [w for w in words if w not in stop]  

wlist3   = FreqDist(words_sm) 
wlist3.most_common(10)

Code 6.8
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NLTK provides a list of stop words that does a better job than ours. 
Import it from nltk.corpus:

from nltk.corpus import stopwords 
print(stopwords.words('english')) 

stopwords = stopwords.words(‘english') 
words_sm2 = [w for w in words if w not in stopwords]  

wlist4    = FreqDist(words_sm2)

Code 6.8
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We can calculate a type-token ratio (TTR) of the particular file we've 
been working on in the Brown Corpus

len(words_sm2) 
len(set(words_sm2)) 

# Type-token ratio 
len(set(words_sm2))/len(words_sm2)

Code 6.9

Question: Is words_sm2 the right one for the calculation?
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What gets counted (and how) can yield different numbers: 

• walk–walked–walks: one type or three different types?  

• if you're interested in word learning, one lemma type (walk) 

• if you're interested in learning of forms, three types 

• Content vs. function words (and punctuation marks) 

Questions you ask typically dictate analysis. So, think carefully
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NLTK comes bundled with a few novels; we'll use them to practice 
calculating TTR:

print(text1) 
print(text2) 
print(text3) 
print(text2[:31]) 
print(text3[:31]) 

len(set(text2))/len(text2) 
len(set(text3))/len(text3)

Code 6.10

Question: Calculate TTR of text1. Is Moby Dick most diverse?
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TTR is affected by text size (i.e., how many tokens in a text?) 

• Consider the following cases: 

• #1: Type = 12; Tokens = 24      TTR = 12/24     = 0.5 

• #2: Type = 12; Tokens = 200   TTR = 12/200 = 0.06 

• Types don't grow linearly with text size 

• TTR is meaningful when you have comparatively sized texts



Aside: defining functions
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There was a lot of typing with our calculation of TTR. We can define 
a function to automate this calculation:

def ttr(lst): 
    result = len(set(lst))/len(lst) 
    return round(result, 3) 

ttr(text1)

Code 6.11

Keyword Parameters inside ()Name

What is returned from the function
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A function can take multiple arguments. Plus, you can add a 
docstring that tells others what this function does

def ttr(lst, digits): 
    """Compute type-token ratio on a list of strings, 
    accepts one list and digits to round.""" 
    result = len(set(lst))/len(lst) 
    return round(result, digits) 

ttr(text1, 3) 
ttr(text2, 4) 
help(ttr) 

Code 6.11
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Language isn't just a bunch of words randomly strung together

I don't know when I'll be back ……………

• Most people might say: again or here again but not yesterday 

• We can think of this as estimating the likelihood of word w 
given some history h 

Try this:



N-grams
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We don't have a big enough corpus to estimate every possibility of 
every continuation. There's a clever way to go around this problem: 
n-grams (or chunks)

N-grams are units of n sequences 

• unigrams, bigrams, trigrams, four-grams 

• character-level:  fish              (f, i, s, h)    (fi, is, sh)      (fis, ish) 

• word-level:          Rose is red (rose, is, red)      (rose is, is red)



N-grams and probabilities
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Thinking of language as units of n sequences allows us to ask:

How likely is it for sequences of characters to appear?: 

• th     ng     kn     kw     qt     tr     pn     np 

How likely is it for sequences of words to appear?: 

• boy the       plan of       go to       you are       that the

We can use conditional probability to figure this out



N-grams and probabilities
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Samples of  
n-grams  
from COCA

Source: https://www.ngrams.info/samples_words.asp

https://www.ngrams.info/samples_words.asp


N-grams and probabilities
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Basic idea:  

• CH: given t, what's the likelihood of the next character being h? 

• WD: given the, what's the likelihood of the next word being boy?

p(wn |wn−1) =
C(wn−1wn)
C(Wn−1)

N-grams are fundamental to many applications in NLP (spell 
checker, grammar checker, machine translation)

Markov assumption



N-grams in NLTK
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We can generate bigram (or any n-gram) counts with NLTK:

import nltk 

nltk.bigrams(text1) 

list(nltk.bigrams(text1)) 

nltk.ngrams(text1, 2) 
list(nltk.ngrams(text1, 2)) 

bigrams = list(nltk.ngrams(text1, 2)) 
bicount = FreqDist(bigrams)

Code 6.12
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You can "build" your own corpus with NLTK: 

• http://www.nltk.org/book/ch02.html#loading-your-own-corpus 

Make sure you have plain texts (.txt) 

• PlaintextCorpusReader works with plain text files 

FreqDist and its related functions will work with your corpus 

http://www.nltk.org/book/ch02.html#loading-your-own-corpus


Our plan next week…
• Part-of-speech (POS) tagging 

• POS tags 

• Reading 

• NLTK Chapter 5

29


