LG 467 Computers In Linguistics

[1-2021] Topic 3: Regular Expressions (and Search)

Sakol Suethanapornkul

R eXo,

mailto:suesakol@staff.tu.ac.th
https://github.com/suesakol
https://sakol-suethana.netlify.app

Previously...

» Regular expressions (regex)

N

$
[abc]

[*abc]
alb

(abc)
a{m}
aim, }

a{m,n}

Regex in Python

Let's get back to the re module. This time, it's re.split ()

Code 5.1
source = '"''I go on too many dates

But I can't make 'em stay
At least that's what people say, mm, mm
That's what people say, mm, mm"'""’

print(re.split(r"[', 1", source))

Question: Some things went wrong. What were they?

Regex in Python

You can replace one string with another using re . sub ()

Code 5.1
#re.sub(pat, repl, source)

print(re.sub(r" (\w+)?"\w.?", "BAD! ", source))
print(re.sub(r"mm(?!,)", "urgh", source))

Regex in Python

Lookarounds help you create custom anchors:

Patterns Matches Examples
(7!pat) Anything not followed by pat ' \w+(?2!\d) "’
(7/<!pat) Anything not preceded by pat r' (?2<!\d) \w+'
(7=pat) Whatever that is followed by pat r'\d+(?=,)"

(/7<=pat)

Whatever that is preceded by pat r' (?<=-)\d+’

nltk regexp tokenize()

You can use regex to tokenize texts with NLTK:

>>> text = 'That U.S.A. poster-print costs $12.40...'

>>> pattern = r' "' (?x) # set flag to allow verbose regexps
(?:[A-Z]\.)+ # abbreviations, e.g. U.S.A.
| \w+(?:=\w+)x* # words with optional internal hyphens
| \$7\d+(7 \.\d+)?%? # currency and percentages, e.g. $12.40, 82%
| \.\ # ellipsis
| [][a2 ()=] # these are separate tokens; includes], [

>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']

See this for even more complex regex patterns!

NLTK Ch.3

https://www.nltk.org/_modules/nltk/tokenize/treebank.html

Finite-state Automata

Finite-state Automata (FSAs)

Finite-state automata (FSAs) is a mathematical model:
 that describes one type of language (regular language)

 the product of which can be converted to regex (& vice versa)

Finite-state Automata (FSAs)

An automaton comprises four elements:

1. States 2. Initial state 3. Transition rules 4. 1+ final states

XX*yy*

Main idea: FSA generates language corresponding to the paths

Finite-state Automata (FSAs)

An automaton can be associated with a set of strings it accepts/
generates

« FSAs can be useful tools for recognizing — and generating -
subsets of natural language

- But they cannot represent all natural language phenomena

10 Adapted from: Columbia's CS class

http://www1.cs.columbia.edu/~julia/courses/CS4705/regexpr.ppt.

1

Finite-state Automata (FSAs)

dr.
the rev. mr. pat . robinson
\/
mSs
3> 3>
mrs.

Adapted from: Columbia's CS class

http://www1.cs.columbia.edu/~julia/courses/CS4705/regexpr.ppt.

