
LG 467 Computers in Linguistics

[1-2021] Topic 3: Regular Expressions (and Search)

Sakol Suethanapornkul

! ! "

mailto:suesakol@staff.tu.ac.th
https://github.com/suesakol
https://sakol-suethana.netlify.app

Previously…

2

• Tokenization with NLTK

from nltk.tokenize import word_tokenize, TweetTokenizer
Code 3.7

sent = '''If you’re happy and you know it, clap your
hands.'''
sent2 = '''I didn't wanna go into detail how these
things'd been done!'''

word_tokenize(sent)
word_tokenize(sent2)

Code 3.8

Previously…

3

• Tokenizing tweets with TweetTokenizer() class

tweet = '''@MayorBowser @DOEE_DC @DCDPW @capitalweather
@washingtonpost Been #flooding like this for years no
help from the #DCgovernment #cafritz
#connecticutavenue'''

twt = TweetTokenizer()
twt.tokenize(tweet)

Code 3.8

How does tokenization work?

4

• In part:

• lists of abbreviations (don't split U.S.A., U.K., or e.g.)

• Heuristics (capital → previous period was a sentence ending)

• But most importantly:

• Patterns:

• anything with a XXXX's: split the genitive s

• split/don't split hyphenated words

• and etc.

Regular Expressions

5

Regular expression

6

A regular expression (or regex):

• is a sequence of characters that specifies a search pattern

• describes a regular language (in formal language theory)

• has no linguistic content

Regex is widely used:

• in search engines, text processors, etc.

• in tokenization, pattern matching (→ chatbots), etc.

Regular expression

7

A regular expression (or regex):

• is very powerful but quite cryptic

• is fun, once you understand them

Regex is particularly useful for searching in texts:

• when we have a pattern to search for; and

• a corpus of texts to search through

By convention, regex is often given between slashes → /hello/

Regex in Python

8

We can use regex with the standard module re:

import re

In Python, a regex search is written as
x = re.match(pat, str)

result = re.match('this', 'this is a cat’)

result
result.group()

or
re.match('this', 'this is a cat').group()

Code 4.1

Regex in Python

9

match() checks whether a string begins with the pattern

match() finds exact beginning match
str1 = "you're okay?"
str2 = "How are you?"

a = re.match('you', str1)
b = re.match('you', str2)

To extract the match use .group()
a.group()
b.group()

Code 4.2

Regex in Python

10

search() finds first match anywhere in the source string

str1 = "You're about to find out how powerful regex is"

re.search('find')
re.match('find') # compare

Code 4.3

Question: How can we extract multiple matches from a multiline
file using search()?

Regex in Python

11

Quiz: Extract "happy" from the following lyric [5 mins]

song = '''If you’re happy and you know it,
Clap your hands.
If you're happy and you know it,
Clap your hands.

If you're happy and you know it,
And you really want to show it,
If you're happy and you know it,
Clap your hands.'''

Code 4.4

Hint: split the string by a newline and use a for-loop

Regex in Python

12

findall() finds all matches in the source string

str1 = "Where are we? Who are we? Why are we here? We
aren't sure!"

re.findall('we', str1) # obtain a list

Code 4.5

Question: How many "we" in the string? How many did we get?
Anything missing?

Tutorial

13

Thus far, what we have done is find an exact pattern from strings

• This is like .count('sh') or .replace('love', ‘like')

In the previous examples, we provided literal strings, e.g., :

• /woodchuck/ matches "woodchuck"

• /Woodchuck/ matches "Woodchuck"

• /Woodchucks/ matches "Woodchucks"

Image source: Stick PNG

https://www.stickpng.com/img/animals/groundhogs-woodchucks/groundhog-front-view

Regex: Disjunctions

14

Braces [] specify a disjunction.

Patterns Matches Examples
[bkmrs] Characters in set re.search(r'[bkmrs]ite', ..)

[123] 1, 2, or 3 re.search(r'[123]', ..)

In cases where there is a well-defined sequence, use – inside []

Patterns Matches Examples

[A-Z] An uppercase letter re.search(r'[A-Z]', ..)

[a-z] A lowercase letter re.search(r'[a-z]', ..)

[0-9] A single digit re.search(r'[0-9]', ..)

Regex: Counters

15

To go beyond a single character, we need a few counters

Patterns Matches Examples Possibilities

. Any character but \n r'[Tt].' To to

+ Previous char. 1+ times r'[Bb]a+' Ba Baa Baaa ba baa

* Previous char. 0+ times r'man*' ma man mann

? Previous char. 0/1 time r'[Cc]olou?r' Color color Colour Colour

Stephen Cole Kleene

Question: Are /ba+/ and /baa*/ same or different?

Image source: Wikipedia

https://en.wikipedia.org/wiki/Regular_expression#/media/File:Kleene.jpg

Regex: Special characters

16

In many instances, we'd like to match certain types of characters

Note: The opposites are: \D \W \S \B

Patterns Matches Examples Possibilities

\d A single digit r'\d+' 1 12 123 1234 …..

\w An alphanumeric char. r'\w+' man 120 The …..

\s A whitespace char. r'\s' Hello world

\b A word boundary r'\b' |Green| |idea| |sleeps|

Regex: Anchors

17

Anchor our search patterns to particular places in a string

Patterns Matches Examples Test case: Email

^ Start of source string r'^\w+' suesakol@staff.tu.ac.th

$ End of source string r'\w+$' suesakol@staff.tu.ac.th

Stephen@yahoo.com

123Peter@gmail.com

SS89@georgetown.edu

Lo.31_Cha@staff.tu.ac.th

How about these emails?

Regex: Escape characters

18

If you want a special regular expression character to just behave
normally, prefix it with \

Patterns Matches Examples
\$ A dollar sign r'\$[0-9]+'

\^ A carat r'a\^b'

\+ A plus r'^\+\d+'

\. A period r'\.$'

* An asterisk r'*+'

\[\] \(\) Braces or parentheses r'\(\d+\)'

Regex: Disjunction # 2

19

Let's get back to disjunction…

Patterns Matches Examples

[A-Z] Any uppercase letter r'^[A-Z].+'

[^abc] Not a, b, or c r'^[^abc].+'

ab|cd ab or cd r'cat|dog'

puppy|ies

city|iesWhat will you get with these?
walks|ed

Regex: Parentheses

20

Parenthesis are not part of the match but establish "groups" inside
of the match

str = '''I'd like to go for a walk every day.
I walked 3 kilos yesterday. My friend loves
walking too. She walks a lot.'''

Code 4.6

Regex: Parentheses

21

Parenthesis are not part of the match but establish "groups" inside
of the match

str = '''I'd like to go for a walk every day.
I walked 3 kilos yesterday. My friend loves
walking too. She walks a lot.'''

Code 4.6

We want to capture these instances of "walk"

[Continued]

Regex: Parentheses

22

Let's see an even cooler example of parentheses

head = '''From sakol.suethana@staff.tu.ac.th Sat Dec
12 09:14:16 2015'''

Code 4.7

Regex: Parentheses

23

Let's see an even cooler example of parentheses

head = '''From sakol.suethana@staff.tu.ac.th Sat Dec
12 09:14:16 2015'''

Code 4.7

How can we capture this group "@……"?

[Continued]

Regex: More fun!

24

Specify a range of characters inside {}

Patterns Matches Examples

\w{m} A char. Exactly m times r'\w{5}'

\w{m,} A char. m or more times r'\w{3,}'

\w{m,n} A char. b'w m & n times r'$\d{1,4}(\.\d{1,2})?'

There are a lot more (greedy vs. non-greedy match and positive/
negative lookaround)

Practice

25

Find all the occurrences of "the" in the following sentence:

The boy said, "Look mom. Behind the glass! The pandas are sleeping in their house!"

ELIZA

26

ELIZA is an early NLP system that could carry out a conversation!
User: Men are all alike.

ELIZA: IN WHAT WAY?

User: They're always bugging us about something or other.

ELIZA: CAN YOU THINK OF A SPECIFIC EXAMPLE?

User: Well, my boyfriend made me come here.

ELIZA: YOUR BOYFRIEND MADE YOU COME HERE

User: He says I'm depressed much of the time.

ELIZA: I AM SORRY TO HEAR YOU ARE DEPRESSED

User: It's true. I am unhappy

ElIZA: DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE
UNHAPPY

User: I need some help, that much seems certain.

ELIZA: WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP

User: Perhaps I could learn to get along with my mother.

ELIZA: TELL ME MORE ABOUT YOUR FAMILY

User: My mother takes care of me.

ELIZA: WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU

User: My father.

ELIZA: YOUR FATHER

User: You are like my father in some ways.

Adapted from: Columbia's CS class

http://www1.cs.columbia.edu/~julia/courses/CS4705/regexpr.ppt.

ELIZA-style regular expressions

27

Step 1: replace first person with second person references

Step 2: use additional regular expressions to generate replies

Step 3: use scores to rank possible transformations

Adapted from: Columbia's CS class

http://www1.cs.columbia.edu/~julia/courses/CS4705/regexpr.ppt.

ELIZA

28

Let's see how good ELIZA is: [LINK]

• Read more about ELIZA in L & C Chapter 6 (section 6.7)

https://web.njit.edu/~ronkowit/eliza.html

Regex in Python

29

Let's get back to re module. This time, we'll look at split()

source = '''I go on too many dates
But I can't make 'em stay
At least that's what people say, mm, mm
That's what people say, mm, mm'''

print(re.split(r"[',]", source))

Code 4.8

Question: Some things went wrong. What were they?

nltk_regexp_tokenize()

30

You can use regex to tokenize texts with NLTK:

NLTK Ch.3
>>> text = 'That U.S.A. poster-print costs $12.40...'
>>> pattern = r'''(?x) # set flag to allow verbose regexps
... (?:[A-Z]\.)+ # abbreviations, e.g. U.S.A.
... | \w+(?:-\w+)* # words with optional internal hyphens
... | \$?\d+(?:\.\d+)?%? # currency and percentages, e.g. $12.40, 82%
... | \.\.\. # ellipsis
... | [][.,;"'?():-_`] # these are separate tokens; includes], [
... '''
>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']

See this for even more complex regex patterns!

https://www.nltk.org/_modules/nltk/tokenize/treebank.html

Finite-state Automata (FSAs)

31

Finite-state automata (FSAs) is a mathematical model:

• that describes one type of language (regular language)

• the product of which can be converted to regex (& vice versa)

Finite-state Automata (FSAs)

32

An automaton comprises four elements:

A B C

1. States 2. Initial state 3. Transition rules 4. 1+ final states

Main idea: FSA generates language corresponding to the paths

x

x

y

y

xx*yy*

Finite-state Automata (FSAs)

33

An automaton can be associated with a set of strings it accepts/
generates

• FSAs can be useful tools for recognizing – and generating –
subsets of natural language

• But they cannot represent all natural language phenomena

Adapted from: Columbia's CS class

http://www1.cs.columbia.edu/~julia/courses/CS4705/regexpr.ppt.

Finite-state Automata (FSAs)

34 Adapted from: Columbia's CS class

q0 q1 q6

the

q2 q3 q4 q5

rev. mr.

dr.

pat l. robinson

ɛ ɛ
ms.

mrs.

http://www1.cs.columbia.edu/~julia/courses/CS4705/regexpr.ppt.

Our plan next week…
• Corpora and Search!

• List comprehension [w for w in token if len(w) < 12]

• File input and output

• Readings:

• No reading! 🎉🥳👏

35

