
LG 467 Computers in Linguistics

[1-2021] Topic 2: Text Normalization

Sakol Suethanapornkul

! ! "

mailto:suesakol@staff.tu.ac.th
https://github.com/suesakol
https://sakol-suethana.netlify.app

Previously…

2

• Tokenization is finding minimal units (tokens) from running text

• Texts are a long sequence of characters

• But breaking texts into tokens is easier said than done!

• Consider the following example:

That U.S.A. poster-print costs $12.40

Example from: NLTK Chapter 3

https://www.nltk.org/book/ch03.html

Previously…

3

• Tokenization is a non-trivial problem:

• In English, spaces are not exact

- Contraction I’m, we’re, can’t, or gonna

- Phrases such as inasmuch as, insofar as, and in spite of

- Multiword expressions such as New York and rock 'n' roll

- Words can have punctuation internally, e.g., Ph.D. and AT&T

Tokenization is tied up with named entity recognition (NER)

Previously…

4

• Tokenization is a non-trivial problem:

• Many writing systems don't use spaces between words

• Take Thai as an example:

พี่ๆครับ ผมอยากรู้ว่าไอโฟน 13 จะวางขายที่ไทยเมื่อไหร่ครับ

• People oftentimes code-switch

พี่คะ Boss บอกหนูให้ concentrate on ประเด็นนี้ให้มากกว่านี้

Tokenization

5

A rudimentary tokenizer

6

You may remember a string method .split():

sent1 = '''You need to calm down
 you are being too loud'''

print(sent1.split())

By default, split() uses spaces as a separator

sent2 = '''And I'm just like oh-oh,
 oh-oh, oh-oh, oh-oh, oh-oh'''

print(sent2.split('-'))
print(sent2.split(','))

Code 3.1

Python lists

7

We will talk about other better options to tokenize texts. For now,
let’s talk about lists!

• We've talked about basic data types like strings

• But what if we wanted to store multiple strings together?

Create a list
ls_1 = "man, can, ham".split(',')
ls_2 = ['man', 'can', 'ham', 'man']
ls_3 = ['man', 12, 4.0, True]
ls_4 = ['walk', ['sing', 'yell'], 'sleep']

Code 3.2

Python list

8

A list in Python is an ordered group of items (or elements)

Like strings, we can index & slice items from lists
thai_pm = ['Samak', 'Somchai', 'Apisit', 'Yingluk',
‘Prayut']

thai_pm[0]
thai_pm[-1]
thai_pm[0:2]
thai_pm[-3:-1]
thai_pm[0:-2]
thai_pm[3:7] #slicing items out of range
thai_pm[7]

Code 3.3

Python list

9

You may have recalled from Codes 1.9 and 1.10 that while strings
aren't mutable, lists are:

strings vs lists
a = 'ice'
b = a #what is b?
b = 'cream' #what is a now?

ls1 = ['a', 'b', 'c']
ls2 = ls1
ls2[1] = 'g'
ls1 #what do you think will happen?
ls3 = list(ls1) #create a copy

 #changing ls3 won't change ls1

Code 3.4

Python list

10

You may have recalled from Codes 1.9 and 1.10 that while strings
aren't mutable, lists are:

string vs. list methods
a.upper() #doesn't change a
a.lower()
a.replace('i', 'sli')

thai_pm.reverse()
thai_pm.pop()
print(thai_pm)

Code 3.4

[Continued]

We'd like lists to constantly change: grow, shrink, etc.

List methods

11

There are several useful list methods:

desserts = ['cakes', 'cakes', 'cookies', 'donuts']
desserts.append('ice creams')
desserts.remove('cakes')
desserts.remove('pastries') #what will happen here?
desserts.pop()
desserts.pop(1) #work with index
desserts.clear()

desserts.count(‘cakes')
desserts.count('cake') #exact match; 0 here

Code 3.5

Functions

12

We can apply the following functions on lists:

ex = ['a', 'd', 'd', 'b', 'e', 'c', 'a', 'b', 'd']

sorted(ex)
sorted(ex, reverse = True)

len(ex)
len(set(ex)) #change lists to sets & get unique values

Code 3.6

word_tokenize() in NLTK

13

Let's get back to tokenizing texts! To do this, we need to get
certain things from NLTK:

from nltk.tokenize import word_tokenize
Code 3.7

Go to this module
(~ Python file .py)

And then get this
function for me

if you get an error message about punkt
import nltk
nltk.download('punkt')

Code 3.7

[Continued]

Importing 1+ functions

14

We'll need to import the following functions & classes:

import 1+
from nltk.tokenize import word_tokenize, TweetTokenizer
from nltk.stem import snowball, WordNetLemmatizer

change the function names
from nltk.tokenize import word_tokenize as wt
from nltk.tokenize import TweetTokenizer as tt

Code 3.7

[Continued]

1st attempt: Tokenization

15

Tokenizing strings can be as simple as:

sent = '''If you’re happy and you know it, clap your
hands.'''
sent2 = '''I didn't wanna go into detail how these
things've been done!'''

word_tokenize(sent)
word_tokenize(sent2)

Code 3.8

1st attempt: Tokenization

16

Tokenizing strings can be as simple as:

Answer:
['If', 'you', '’', 're', 'happy', 'and', 'you', 'know',
'it', ',', 'clap', 'your', 'hands', '.']

Answer:
['I', 'did', "n't", 'wan', 'na', 'go', 'into',
'detail', 'how', 'these', 'things', "'ve", 'been',
'done', '!']

Code 3.8

[Continued]

1st attempt: Tokenization

17

Tokenizing tweets isn’t that difficult either:

tweet = '''@MayorBowser @DOEE_DC @DCDPW @capitalweather
@washingtonpost Been #flooding like this for years no
help from the #DCgovernment #cafritz
#connecticutavenue'''

twt = TweetTokenizer()
twt.tokenize(tweet)

Code 3.8

[Continued]

Any difference between this and word_tokenize()?

Control flow: for

18

To iterate through a sequence & perform some operation, use for

for <variable> in <sequence>:
 <expression>
 <expression>
 ...

for first for loop
for i in range(1,10):
 print(i)
print("Finished counting")

Code 3.9

Control flow: for

19

A more useful example involves printing multiple elements per line

index = 0
for number in [13, 15, 17, 19, 21, 23]:
 number = number + 5
 index += 1
 print("Index:", index, "Value:", number)

or equivalently
num = [13, 15, 17, 19, 21, 23]
for index, number in zip(range(1,len(num)), num):
 number = number + 5
 print("Index:", index, "Value:", number)

Code 3.9

[Continued]

Lemmatization & Stemming

20

Stemming & Lemmatization
In an English text, we are likely to see different forms of a word

• organize, organizes, organized, organizing

We may also see derivationally related words with similar meanings

• democracy, democratic, democratization

21 Adapted from: Information retrieval companion website

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Stemming & Lemmatization
Goal: reduce inflectional forms/derivationally related forms to base

22 Adapted from: Information retrieval companion website

• am, are, is → be

• car, cars, cars', car's → car

• the boy's cars are different colors

• the boy car be differ color

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Stemming & Lemmatization

23 Adapted from: Information retrieval companion website

Stemming: crude heuristic process that chops off end of words,
including removal of derivational affixes

Lemmatization: use of vocabulary as well as morphological analysis
of words, with an aim of removing inflectional
endings and returning a word back to a dictionary
form (or lemma)

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Stemming & Lemmatization

24 Adapted from: Jurafsky and Martin’s Chapter 2

One of the most widely used stemming algorithms is the Porter
stemmer:

This was not the map we found in Billy Bones’s chest, but an accurate
copy, complete in all things-names and heights and soundings-with the
single exception of the red crosses and the written notes.

Thi wa not the map we found in Billi Bone s chest but an accur
copi complet in all thing name and height and sound with the
singl except of the red cross and the written note

https://web.stanford.edu/~jurafsky/slp3/2.pdf

Stemming & Lemmatization
NLTK offers a few useful stemmers (Porter, Lancaster, Snowball):

25

snow = snowball.SnowballStemmer('english')

stemmers work with one "word" at a time
text = "construction workers built and constructed many
buildings in major cities”

text_tok = word_tokenize(text)

for t in text_tok:
 print(snow.stem(t))

Code 3.10

Stemming & Lemmatization
Lemmatization often leads to a better result. WordNet lemmatizer
only removes affixes if the resulting word is in its dictionary.

26

wn = WordNetLemmatizer()
for t in text_tok:
 print(wn.lemmatize(t))

Code 3.11

Compare the outputs of stemmer vs lemmatizer. Which is better?
Which produced better "words"?

Our plan next week…
• Engine behind tokenization

• Regular expressions (RE)

• List comprehension [w for w in token if len(w) < 12]

• Readings:

• J & M Chapter 2 (Sec 2.1)

• L & C Chapter 4 (Sec 4.4; pp. 107–115)

27

