
LG 467 Computers in Linguistics

[1-2021] Topic 1: Encoding Language

Sakol Suethanapornkul

! ! "

mailto:suesakol@staff.tu.ac.th
https://github.com/suesakol
https://sakol-suethana.netlify.app

Previously…
Goal:

Utilities:

2

Make computers process & understand human language

Do useful things with language for us

- Search engines (Google, Bing, DuckDuckGo)

- Virtual assistants (Siri, Alexa, Cortana, etc.)

- Chatbots

- Voice & speech recognition softwares

- Translation systems

But, here's the wrinkle…
For computers to be able to process language…

• they need to have knowledge of language, which means

• they must be able to encode language

3

How can computers actually do this?

A "byte"-size Intro

4

Computer 101
To a computer, human language is just binary data, the 0s and 1s

5

Hello, there! 01001000 01100101 01101100 01101100
01101111 00100000 01110100 01101000
01100101 01110010 01100101 00100001

สวัสดี
11100000 10111000 10101010 11100000
10111000 10100111 11100000 10111000
10110001 11100000 10111000 10101010
11100000 10111000 10010100 11100000
10111000 10110101

Computer 101
Why is information stored and represented this way?

6 Image source: Flickr

• Information "travels" over wires.

• Is "information" passing through a wire?:

• 1 = Yes

• 0 = No

https://www.flickr.com/photos/defenceimages/6792355438

Computer 101
• Bits (binary digits) = most basic unit of information (on-off state)

• Logical state: 1 (= ON; YES; TRUE) or 0 (= OFF; NO; FALSE)

• Each bit (= wire) doesn’t carry much information, but…

• Bytes (each is equal to 8 bits) = basic addressable unit

• Bytes can represent much more information (e.g., characters,
numbers, etc.)

7

11000111Decimal number: 199

Binary number system
• Decimal notation (numbers 0-9)

8

100101102103104

0525445,250

Binary number system
• Binary notation (numbers: 0 and 1)

9

2021222324

0110110110

• What is this number in decimal?

Binary number system
• Binary notation (numbers: 0 and 1)

10

2021222324

0110110110

• Answer: (1 × 24) + (0 × 23) + (1 × 22) + (1 × 21) + (0 × 20) = 22

Binary number system
• Going from decimal numbers to binary (division method)

11

1Yes25/2

Decimal Remainder? Binary

0112/2

6/2

3/2

1/2

= 12

= 6

= 3

= 1

= 0

No

No

Yes

Yes

001

1001

11001

Encoding Texts

12

Encoding written language
• Representing characters (and texts) with 0s and 1s:

13

010010000110010101101100011011000110111100100001

• Each character is mapped to a code point (i.e., a unique integer)

• H → 72dec

• e → 101dec

Adapted from: Na-Rae Han’s LING 1330/2330 lecture

Hello!

http://www.pitt.edu/~naraehan/ling1330/Lecture1.pdf

Encoding written language
• Each code point is represented as a binary number, using a fixed

number of bits

14

• Say: 8 bits (= 1 byte)

• H → 72dec → 01001000 (26 + 23 → 64 + 8 = 72)

• e → 101dec → 01100101 (26 + 25 + 22 + 20 → 64 + 32 + 4 + 1 = 101)

Adapted from: Na-Rae Han’s LING 1330/2330 lecture

• One byte can represent 256 different characters (28 = 256)

• 00000000 → 0dec 11111111 → 255dec

http://www.pitt.edu/~naraehan/ling1330/Lecture1.pdf

ASCII
• ASCII: American Standard Code for Information Interchange

• One of the first character encoding standards (out in 1963)

15

• ASCII uses 7 bits (27 = 128 possible code points, from 0 to 127)

• Code points for control characters (start of text, end of text, etc.)

• 32 to 127 for printable characters

• Space, punctuations (. , ; ! ?), symbols (< > & $ *), numbers

• Uppercase letters and lowercase letters

ASCII

16 Image source: Quara

https://www.quora.com/What-is-the-ASCII-code-for-digits-or-numbers

ASCII

17

• So, what is this in English? (Note: 7 bits and spaces)

1101000 1101111 1101101 1100101

ASCII

18

• So, what is this in English? (Note: 7 bits and spaces)

ANSWER: 1101000 → 104 → h

1101111 → 111 → o

1101101 → 109 → m

1100101 → 101 → e

• In an 8-bit representation, "insert" 0 as the highest bit

1101000 1101111 1101101 1100101

Encoding different systems

19

• ASCII is well and good for English characters

• but how about diacritics (e.g., résumé)?

• and all other scripts (Arabic, Thai, Japanese, etc.)?

• One solution: Extend ASCII to 8-bit encoding (256 characters) and
use code points 128-255 with non-English characters

• ISO 8859 has 16 implementations

• ISO 8859-1: French, German, Spanish, etc.

• ISO 8859-7: Greek alphabet

Adapted from: Na-Rae Han’s LING 1330/2330 lecture

http://www.pitt.edu/~naraehan/ling1330/Lecture4.pdf

Encoding different systems

20

• Problems: Two different encodings

• same code points for different characters

• different code points for same characters

• We’d like to work with characters from any existing writing system

• and also, in today’s world, emojis 🐶 📱 💔 🤪 👏

Adapted from: Language & Computers’ online material set

• Let’s talk about Unicode…

http://www.sfs.uni-tuebingen.de/~dm/tmp/lang-and-comp/teaching/slides/01-prologue/slides-120614.pdf

Unicode

21

• Unicode Consortium, founded in 1991, develops a single repre-
sentation for every possible character

"Unicode provides a unique number for every character, no matter
what the platform, no matter what the program, no matter what the
language."

(www.unicode.org)

Adapted from: Language & Computers’ online material set

http://www.sfs.uni-tuebingen.de/~dm/tmp/lang-and-comp/teaching/slides/01-prologue/slides-120614.pdf

Unicode

22

• Unicode 13.0 contains 143,859 characters (incl. 55 new emojis)

• 14.0 (beta; Sept 2021) adds new scripts & emojis

• Unicode uses 32 bits (4 bytes), meaning we can store:

• 232 = 4,294,967,296 possible characters!

• Wait, does this mean everything is encoded with 32 bits? Isn’t
this wasteful for some characters?

https://unicode.org/versions/Unicode13.0.0/

Unicode

23

• Let’s take one example:

Adapted from: Na-Rae Han’s LING 1330/2330 lecture

ASCII (7 bits)h → 1101000

(8 bits; 1 byte)→ 01101000

(16 bits; 2 bytes) 0000000001101000→

(32 bits; 4 bytes)→ 0000000000000000
0000000001101000

http://www.pitt.edu/~naraehan/ling1330/Lecture4.pdf

Unicode

24

• Unicode has three versions

• UTF-32 (32 bits): direct representation

• UTF-16 (16 bits): 216 = 65,536

• UTF-8 (8 bits): 28 = 256

• One awesome fact: You can represent 232 code points with UTF-8

* UTF is short for Unicode Transformation Format.

Unicode

25

• UTF-8 (or utf8) uses a variable-width encoding

• Encode characters in as few bytes as possible but will use
multiple bytes if needed

Example: home

01101000 01101111 01101101 01100101

Unicode

26

• UTF-8 (or utf8) uses a variable-width encoding

• Encode characters in as few bytes as possible but will use
multiple bytes if needed

Example: home

01101000 01101111 01101101 01100101

Unicode

27

• UTF-8 (or utf8) uses a variable-width encoding

• Encode characters in as few bytes as possible but will use
multiple bytes if needed

Example: home

01101000 01101111 01101101 01100101

Unicode

28

• UTF-8 (or utf8) uses a variable-width encoding

• Encode characters in as few bytes as possible but will use
multiple bytes if needed

Example: สกล

11100000 10111000 10101010
11100000 10111000 10000001
11100000 10111000 10100101

Unicode

29

• UTF-8 (or utf8) uses a variable-width encoding

• Encode characters in as few bytes as possible but will use
multiple bytes if needed

Example: สกล

11100000 10111000 10101010
11100000 10111000 10000001
11100000 10111000 10100101

Unicode

30

• UTF-8 (or utf8) uses a variable-width encoding

• Encode characters in as few bytes as possible but will use
multiple bytes if needed

Example: สกล

11100000 10111000 10101010
11100000 10111000 10000001
11100000 10111000 10100101

111000101010
111000000001
111000100101

→
→
→

E2Ahex→

Unicode

31

• UTF-8 (or utf8) uses a variable-width encoding

• So, let’s return to our earliest example

สวสัดี 11100000 10111000 10101010 11100000

10111000 10100111 11100000 10111000

10110001 11100000 10111000 10101010

11100000 10111000 10010100 11100000

10111000 10110101

Unicode

32

• Reading Unicode code points

U+0041

U+006A Latin small letter j

Latin capital letter A

• U+ means “Unicode"

• 0041hex and 006Ahex are code points

• hex digits for easy byte conversion (and readability)

Unicode

33

Look up code points (U+0E01)

Unicode

34

• C0 Controls and Basic Latin

U+0072

Unicode

35

• Thai

U+0E01

Unicode

36

• Hexadecimal or hex (base-16)

• hex digits = 0 1 2 3 4 5 6 7 8 9 A B C D E F

• a hex digit is equivalent to 4 bits; two hex digits = 8 bits

Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary

0 0000 4 0100 8 1000 C 1100

1 0001 5 0101 9 1001 D 1101

2 0010 6 0110 A 1010 E 1110

3 0011 7 0111 B 1011 F 1111

Why did you put me through this?

37

• Webpages, emails, etc. rely on this standard

• It’s good to know a bit about this, although we don’t have to deal
with bits and bytes directly in our work!

