
LG 467 Computers in Linguistics

[1-2021] Topic 6: Parsing

Sakol Suethanapornkul

E G c

mailto:suesakol@staff.tu.ac.th
https://github.com/suesakol
https://sakol-suethana.netlify.app

From HMMs to syntax

2

We have seen some simple ways of dealing with syntax:

• Markov models capture surface properties of syntax

• N-grams (VMM): In the end…

• HMM: IN DT NN

• But this isn't enough

• Long distance dependencies in languages

• wake [the old man] up

From HMMs to syntax

3

Take a look at this example:

import nltk

nltk.pos_tag(nltk.word_tokenize("Let's wake up at
six"))

[('Let', 'VB'), ("'s", 'POS'), ('wake', 'VB'),

(‘up’, 'RP'), ('at', 'IN'), ('six', 'CD')]

nltk.pos_tag(nltk.word_tokenize("Let's wake that old
man up at six"))

[('Let', 'VB'), ("'s", 'POS'), ('wake', 'VB'),

(‘that', 'IN'), ('old', 'JJ'), ('man', 'NN'),

(‘up’, 'RB'), ('at', 'IN'), ('six', 'CD')]

Code 9.1

Describing structure of sentences

4

Constituent: word or group of words that function as a single unit

[That man] is my friend

[The guy in a blue shirt] loves cookies

*That is my friend

คณุครแูอบกนิ[ยาถา่ย]

แมไ่ป[ตลาดสดหนา้ปากซอย]

*คณุครแูอบกนิถา่ย

Describing structure of sentences

5

Constituent: word or group of words that function as a single unit

[on September tenth] I’ll be moving

I’ll be moving [on September tenth]

*On September I’ll be moving tenth

[ตอนเชา้วนัพรุง่นี]้เราจะตืน่มาตกับาตร

เราจะตืน่มาตกับาตร[ตอนเชา้วนัพรุง่นี]้

*ตอนเชา้เราจะตืน่มาตกับาตรพรุง่นี้

Context-Free Grammar (CFG)

6

CFG: formal system for modeling constituent structure

• A set of (de)composition rules over a set of symbols

• Sample rules:

• NP → DT NN

• NP → NNP

• DT → the

• NN → house | mouse

Rules in the form of A → β

Context-Free Grammar (CFG)

7

• Sample rules:

• NP → DT NN

• NP → NNP

• DT → the

• NN → house | mouse Terminals (often = tokens)

CFG: formal system for modeling constituent structure

• A set of (de)composition rules over a set of symbols

Context-Free Grammar (CFG)

8

• Sample rules:

• NP → DT NN

• NP → NNP

• DT → the

• NN → house | mouse

 Non-terminals ("abstraction symbol")

CFG: formal system for modeling constituent structure

• A set of (de)composition rules over a set of symbols

Context-Free Grammar (CFG)

9

• Sample rules:

• NP → DT NN

• NP → NNP

• DT → the

• NN → house | mouse

Left side: Single non-terminal symbol

Right side: 1+ Non-terminal/terminal

CFG: formal system for modeling constituent structure

• A set of (de)composition rules over a set of symbols

Context-Free Grammar (CFG)

10

• Sample rules:

• NP → DT NN

• NP → NNP

• DT → the

• NN → house | mouse Rules are hierarchically embedded

CFG: formal system for modeling constituent structure

• A set of (de)composition rules over a set of symbols

Context-Free Grammar (CFG)

11

CFG can be thought of in two ways:

• Device for generating sentences

• Device for assigning a structure to a given sentence

"the house" derived from NP• NP → DT NN

• NP → NNP

• DT → the

• NN → house | mouse

Context-Free Grammar (CFG)

12

In CFG, a starting symbol must be selected

• Each grammar: one designated start symbol S

• Because CFG is used to define sentences, S = "sentence" node

Some parts of language can't be captured by context-free grammar rules

Context-Free Grammar (CFG)

13

Some examples:

• S → NP VP

• VP → V NP

• VP → V

• NP → DT NN

• V → eats

• NN → mouse | house

• DT → the

Now we can generate/parse:

Context-Free Grammar (CFG): Exercise

14

Let's try to extract context free rules from a sentence:

• Every sentence has S at the top

• S breaks down into phrases

• Phrases decompose into our POS tags/other phrases

• POS tags lead to tokens

Context-Free Grammar (CFG): Exercise

15

Sentence: They really go above and beyond!

Context-Free Grammar (CFG): Exercise

16

A possible analysis (from the English Web Treebank):

Question: What are the context-free grammar rules?

Context-Free Grammar (CFG): Exercise

17

Rules:

• S → NP ADVP VP

• NP → PRP

• VP → VBP ADVP

• ADVP → RB

• ADVP → RB CC RB

Context-Free Grammar (CFG)

18

If we use traditional V for verbs, for instance:

• S → NP VP

• VP → V NP

• NP → DT N

• V → bite

• N → dog | boy

Question: What sentences can we generate?

Context-Free Grammar (CFG)

19

This is why tags are necessary:

• VP → VBZ NP

• VP → VBP NP

• VBP → bite

• VBZ → bites

• ….

We can have subject-verb agreement as part of our rule!

Context-Free Grammar (CFG)

20

For a formal definition, a CFG "G" is defined by four parameters:
G ≡ N, ∑, R, S (this is a "4-tuple")

N Set of non-terminal symbols

∑ Set of terminal symbols (not in N)

R Set of rules, each in the form A →β, where A ∈ N, β ∈ (∑⋃N)*

S Designated start symbol

Treebanks

21

Thus far, we have hand-crafted rules to describe one sentence

• Can we build a grammar of language, taking into account its usage?

• Yes! Grammar can be induced from annotated data (like what we just
did in our exercise)

• With hundreds of sentences, we can also note the frequencies with
which each rule is used

• We can save these probabilities along with rules, which turns a CFG
into a Probabilistic Context-Free Grammar (PCFG)

Treebanks

22

Treebank: a syntactically annotated corpus (= corpus of trees)

• each sentence in a corpus paired with a parse tree

• all sentences in treebank → grammar of language*

• major roles:

• syntactic parsing: assign a parse tree to any sentence

• linguistic research: investigate syntactic phenomena

Treebanks

23

The Penn Treebank Project: A 4.5-m. words of AmE (see Marcus, 1993)

• POS tags we saw in the previous unit

• syntactic parses (parenthesized notation; see next slide)

• CFG rules: WSJ corpus (1 million words)

• 1,000,000 non-lexical rule tokens

• ∼17,500 distinct rule types

https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html

Treebanks

24

Parsed sentences from the Penn Treebank

Source: Figure 12.7 in Jurafsky & Martin [chapter 12]

Parsing

25

CFG rules from a treebank allow us to process actual sentences
generated by humans

• several algorithms available (J & M Chapter 13)

• NTLK offers a few implementations

Compiling the grammar

26

Let's begin with CFG rules:

from nltk import CFG

grammar_string = """

S -> NP VP

NP -> PRP

VP -> VBD

PRP -> 'I'

VBD -> 'cried'

"""

exercise_grammar = CFG.fromstring(grammar_string)

exercise_grammar

Code 9.2

Parsing

27

Now that we have CFG rules in place, let's go ahead and parse:

test = word_tokenize("I cried")

Make a parser object with our grammar

parser = nltk.ChartParser(exercise_grammar)

Parse

trees = parser.parse(test)

for tree in trees:

 print(tree)

Code 9.3

Parsing

28

As our grammar gets bigger, it will have more rules:

grammar_string = """

S -> NP VP

NP -> PRP

VP -> VP | VP ADVP | VBD | VBZ VBG RB

ADVP -> RB

PRP -> 'I' | 'He'

VBD -> 'cried'

VBZ -> 'is'

VBG -> 'falling'

RB -> 'fast'

"""

Code 9.4

Parsing

29

As our grammar gets bigger, it will have more rules:

exercise_grammar = CFG.fromstring(grammar_string)

test = word_tokenize("He is falling fast")

parser = nltk.ChartParser(exercise_grammar)

trees = parser.parse(test)

for tree in trees:

 print(tree)

Code 9.4
[Continue]

Question: How many parses will we get?

Parsing

30

Take note of bracketing (color added to improve readability):

(S (NP (PRP He))

(VP (VBZ is) (VBG falling) (RB fast)

)

)

(S (NP (PRP He))

(VP

(VP (VBZ is) (VBG falling) (RB fast))

)

)

Code 9.4
[Continue]

Language and complexity

31

Chomsky introduced a hierarchy of grammars in 1956:

Source: Wikipedia

Our plan next week…
• Parsing, Dependency Grammar

• Reading

• J & M 3rd edition, Chapter 15

32

