
LG 467 Computers in Linguistics

[1-2021] Topic 6: Parsing

Sakol Suethanapornkul

! ! " 

mailto:suesakol@staff.tu.ac.th
https://github.com/suesakol
https://sakol-suethana.netlify.app


From HMMs to syntax

2

We have seen some simple ways of dealing with syntax: 

• Markov models capture surface properties of syntax 

• N-grams (VMM): In the end… 

• HMM:                   IN DT NN 

• But this isn't enough 

• Long distance dependencies in languages 

• wake [the old man] up



From HMMs to syntax

3

Take a look at this example:

import nltk 

nltk.pos_tag(nltk.word_tokenize("Let's wake up at 
six")) 
# [('Let', 'VB'), ("'s", 'POS'), ('wake', 'VB'),  
# (‘up’, 'RP'), ('at', 'IN'), ('six', 'CD')] 

nltk.pos_tag(nltk.word_tokenize("Let's wake that old 
man up at six")) 
# [('Let', 'VB'), ("'s", 'POS'), ('wake', 'VB'),  
# (‘that', 'IN'), ('old', 'JJ'), ('man', 'NN'),  
# (‘up’, 'RB'), ('at', 'IN'), ('six', 'CD')]

Code 9.1



Describing structure of sentences

4

Constituent: word or group of words that function as a single unit

[That man] is my friend

[The guy in a blue shirt] loves cookies

*That is my friend

คณุครแูอบกนิ[ยาถา่ย]

แมไ่ป[ตลาดสดหนา้ปากซอย]

*คณุครแูอบกนิถา่ย



Describing structure of sentences

5

Constituent: word or group of words that function as a single unit

[on September tenth] I’ll be moving

I’ll be moving [on September tenth]

*On September I’ll be moving tenth

[ตอนเชา้วนัพรุง่นี]้เราจะตืน่มาตกับาตร

เราจะตืน่มาตกับาตร[ตอนเชา้วนัพรุง่นี]้

*ตอนเชา้เราจะตืน่มาตกับาตรพรุง่นี้



Context-Free Grammar (CFG)

6

CFG: formal system for modeling constituent structure 

• A set of (de)composition rules over a set of symbols

• Sample rules: 

• NP → DT   NN 

• NP → NNP 

• DT → the 

• NN → house | mouse

Rules in the form of   A → β



Context-Free Grammar (CFG)

7

• Sample rules: 

• NP → DT   NN 

• NP → NNP 

• DT → the 

• NN → house | mouse Terminals (often = tokens)

CFG: formal system for modeling constituent structure 

• A set of (de)composition rules over a set of symbols



Context-Free Grammar (CFG)

8

• Sample rules: 

• NP → DT   NN 

• NP → NNP 

• DT → the 

• NN → house | mouse

  Non-terminals ("abstraction symbol")

CFG: formal system for modeling constituent structure 

• A set of (de)composition rules over a set of symbols



Context-Free Grammar (CFG)

9

• Sample rules: 

• NP → DT   NN 

• NP → NNP 

• DT → the 

• NN → house | mouse

Left side: Single non-terminal symbol

Right side: 1+ Non-terminal/terminal

CFG: formal system for modeling constituent structure 

• A set of (de)composition rules over a set of symbols



Context-Free Grammar (CFG)

10

• Sample rules: 

• NP → DT   NN 

• NP → NNP 

• DT → the 

• NN → house | mouse Rules are hierarchically embedded

CFG: formal system for modeling constituent structure 

• A set of (de)composition rules over a set of symbols



Context-Free Grammar (CFG)

11

CFG can be thought of in two ways: 

• Device for generating sentences  

• Device for assigning a structure to a given sentence

"the house" derived from NP• NP → DT   NN 

• NP → NNP 

• DT → the 

• NN → house | mouse



Context-Free Grammar (CFG)

12

In CFG, a starting symbol must be selected 

• Each grammar: one designated start symbol S 

• Because CFG is used to define sentences, S = "sentence" node

Some parts of language can't be captured by context-free grammar rules



Context-Free Grammar (CFG)

13

Some examples: 

• S   → NP   VP 

• VP → V   NP 

• VP → V 

• NP → DT   NN 

• V    → eats 

• NN → mouse | house 

• DT  → the

Now we can generate/parse:



Context-Free Grammar (CFG): Exercise

14

Let's try to extract context free rules from a sentence: 

• Every sentence has S at the top 

• S breaks down into phrases 

• Phrases decompose into our POS tags/other phrases 

• POS tags lead to tokens



Context-Free Grammar (CFG): Exercise

15

Sentence:    They really go above and beyond!



Context-Free Grammar (CFG): Exercise

16

A possible analysis (from the English Web Treebank):

Question: What are the context-free grammar rules?



Context-Free Grammar (CFG): Exercise

17

Rules: 

• S → NP ADVP VP 

• NP → PRP 

• VP → VBP ADVP 

• ADVP → RB 

• ADVP → RB CC RB 



Context-Free Grammar (CFG)

18

If we use traditional V for verbs, for instance: 

• S → NP VP 

• VP → V NP 

• NP → DT N 

• V → bite 

• N → dog | boy

Question: What sentences can we generate?



Context-Free Grammar (CFG)

19

This is why tags are necessary: 

• VP → VBZ NP 

• VP → VBP NP 

• VBP → bite 

• VBZ → bites 

• ….

We can have subject-verb agreement as part of our rule!



Context-Free Grammar (CFG)

20

For a formal definition, a CFG "G" is defined by four parameters:     
G ≡ N, ∑, R, S (this is a "4-tuple")

N     Set of non-terminal symbols 

∑     Set of terminal symbols (not in N) 

R     Set of rules, each in the form A →β, where A ∈ N, β ∈ (∑⋃N)* 

S     Designated start symbol



Treebanks

21

Thus far, we have hand-crafted rules to describe one sentence

• Can we build a grammar of language, taking into account its usage?

• Yes! Grammar can be induced from annotated data (like what we just 
did in our exercise)

• With hundreds of sentences, we can also note the frequencies with 
which each rule is used

• We can save these probabilities along with rules, which turns a CFG 
into a Probabilistic Context-Free Grammar (PCFG)



Treebanks

22

Treebank: a syntactically annotated corpus (= corpus of trees) 

• each sentence in a corpus paired with a parse tree 

• all sentences in treebank → grammar of language*  

• major roles: 

• syntactic parsing: assign a parse tree to any sentence 

• linguistic research: investigate syntactic phenomena



Treebanks

23

The Penn Treebank Project: A 4.5-m. words of AmE (see Marcus, 1993) 

• POS tags we saw in the previous unit 

• syntactic parses (parenthesized notation; see next slide)  

• CFG rules: WSJ corpus (1 million words)  

• 1,000,000 non-lexical rule tokens 

• ∼17,500 distinct rule types

https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html


Treebanks

24

Parsed sentences from the Penn Treebank 

Source: Figure 12.7 in Jurafsky & Martin [chapter 12]



Parsing

25

CFG rules from a treebank allow us to process actual sentences 
generated by humans  

• several algorithms available (J & M Chapter 13) 

• NTLK offers a few implementations



Compiling the grammar

26

Let's begin with CFG rules:

from nltk import CFG 
grammar_string = """ 
S -> NP VP 
NP -> PRP 
VP -> VBD 
PRP -> 'I' 
VBD -> 'cried' 
""" 
exercise_grammar = CFG.fromstring(grammar_string) 
exercise_grammar 

Code 9.2



Parsing

27

Now that we have CFG rules in place, let's go ahead and parse:

test = word_tokenize("I cried") 

# Make a parser object with our grammar 
parser = nltk.ChartParser(exercise_grammar) 

# Parse 
trees = parser.parse(test) 

for tree in trees: 
    print(tree)

Code 9.3



Parsing

28

As our grammar gets bigger, it will have more rules:

grammar_string = """ 
S -> NP VP 
NP -> PRP 
VP -> VP | VP ADVP | VBD | VBZ VBG RB 
ADVP -> RB 
PRP -> 'I' | 'He' 
VBD -> 'cried' 
VBZ -> 'is' 
VBG -> 'falling' 
RB -> 'fast' 
"""

Code 9.4



Parsing

29

As our grammar gets bigger, it will have more rules:

exercise_grammar = CFG.fromstring(grammar_string) 

test = word_tokenize("He is falling fast") 
parser = nltk.ChartParser(exercise_grammar) 
trees = parser.parse(test) 

for tree in trees: 
    print(tree)

Code 9.4
[Continue]

Question: How many parses will we get?



Parsing

30

Take note of bracketing (color added to improve readability):

(S (NP (PRP He))  
(VP (VBZ is) (VBG falling) (RB fast) 
) 

) 

(S (NP (PRP He))  
(VP  

(VP (VBZ is) (VBG falling) (RB fast)) 
) 

)

Code 9.4
[Continue]



Language and complexity

31

Chomsky introduced a hierarchy of grammars in 1956:

Source: Wikipedia



Our plan next week…
• Parsing, Dependency Grammar 

• Reading 

• J & M 3rd edition, Chapter 15

32


