LG 467 Computers in Linguistics

[1-2021] Topic 5: POS tagging

Sakol Suethanapornkul

Previously...

POS tagging = assigning a part of speech to each word in a text

Adapted from: Jurafsky & Martin [chapter 8 PPT]

Previously...

Tag	Description	Example	Tag	Description	Example	Tag	Description	Exam
CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"	to
CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oo
DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW	foreign word	mea culpa	POS	possessive ending	's	VBG	verb gerund	eating
IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
	subordin-conj						ple	
JJ	adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which
LS	list item marker	1, 2, One	RBS	superlaty. adv	fastest	WP	wh-pronoun	what,
MD	modal	can, should	RP	particle	up, off	WP\$	wh-possess.	whose
NN	sing or mass noun	llama	SYM	symbol	+,%, &	WRB	wh-adverb	how, v

Source: Figure 8.2 in Jurafsky & Martin [chapter 8]

Previously...

An off-the-shelf tagger is available for English:

from nltk import pos_tag, word_tokenize

- text = "John's big idea isn't all that bad." token = word_tokenize(text)
- pos = pos_tag(token)

print(pos)

Question: What tagset is this?

Code 7.1

Tag the following sentences with the PTB tags:

quick/ brown/ 1. The/ the/ dog/ lazy/

2.	Α/	woman/	needs/
	a/	fish/	needs/

NOTE: * The phrase is a famous feminist slogan coined by Irina Dunn

*

Question: Some things aren't right. What are they?

from nltk import pos_tag, word_tokenize

txt2 = "A woman needs a man like a fish needs a bicycle."

pos_tag(word_tokenize(txt1)) pos_tag(word_tokenize(txt2))

```
txt1 = "The quick brown fox jumps over the lazy dog."
```


Question: Some things aren't right. What are they?

pos_tag(word_tokenize(txt)

[('The', 'DT'), ('quick', 'JJ ('jumps', 'VBZ'), ('over', 'I ('dog', 'NN'), ('.', '.')]

pos_tag(word_tokenize(txt2 [('A', 'DT'), ('woman', 'NN') ('man', 'NN'), ('like', 'IN') ('needs', 'VBZ'), ('a', 'DT')

ode 8.1

Roughly 85% of word types aren't ambiguous

• Janet is always NNP, hesitantly is always RB

(1 tag)
(2+ tags)
(1 tag)
(2+ tags)

I	WS.	J	Brov	wn
44,43	32 ((86%)	45,799	(85%)
7,02	25 ((14%)	8,050	(15%)
577,42	21 ((45%)	384,349	(33%)
711,78	30 ((55%)	786,646	(67%)

Source: Figure 8.4 in Jurafsky & Martin [chapter 8]

But those 15% ambiguous words tend to be common words

- ~60% of word tokens are ambiguous
- For instance, take the word back
 - earnings growth took a back/ seat
 - a small building in the back/
 - the bill a clear majority of senators back/
 - enable the country to buy back/ debt
 - I was twenty-one back/ •

then

Adapted from: Jurafsky & Martin [chapter 8 PPT]

Sources of information for POS tagging

Let's use a more extreme example:

needs water.")) #[('A', 'DT'), ('man', 'NN'), ('needs', 'VBZ'), # ('a', 'DT'), ('woman', 'NN'), ('like', 'IN'),

Question: Which words are mis-tagged?

Sources of information for POS tagging

- It seems like the following is probably true in NLTK's training data:
 - prior probabilities of words/tags
 - brown is usually NN, i.e., p(NN) > p(JJ)
 - conditional probabilities of sequences
 - JJ usually follows IN+DT (e.g., he's in/IN the next/JJ room)
 - p(JJ|IN, DT) > p(NN|IN, DT)
 - (morphology and wordshape [prefix, suffix, capitalization])

Language models as FSAs

We can model a sequence using a weighted bigram automaton

- Longer contexts possible as "complex" states
- Each transition depends on previous state

But this weighted bigram automaton is for words. How about hidden categories like POS?

Suppose we want to predict p(NN|JJ)

- Markov assumption probability of NN at this point depends on previous word being JJ
 - But typically, we have: the large brown fox....
 - We don't actually know for sure if 'brown' is JJ

We need to:

- estimate likelihood of chain: DT JJ NN NN....?
- Do so for every conceivable chain
- Find most likely one....without running out of memory!

HMM is in fact a weighted FSA

The HMM definition comprises:

- $V = v_1 \dots v_V$
- $Q = q_1, ..., q_N(q_0, q_F)$
- A = a₁₁, a₁₂, ... a_{n1} ... a_{nn}
- O = <O₁, O_T>
- $B = b_i(o_t)$

- # input vocabulary items
- # states
- # transition prob. matrix
- # ordered observations of V
- # prob. of ot given qi

The POS tagging task maps directly to the HMM definition:

- V: words of the English language
- Q: the parts of speech (state: DT, state: NN, etc.)
- A: the probability of NN given DT
- O: the text to be tagged $\langle w_1, ..., w_n \rangle$
- B: the probability of the given DT, i.e., p(the|DT)

Transition probabilities (A):

	NNP	MD	VB	JJ	NN	RB	DT
<i><s></s></i>	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

p(VB|MD) = 0.7968 (rows give the condition)

Source: Figure 8.12 in Jurafsky & Martin [chapter 8]

Emission probabilities (B):

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

p(will|MD) = 0.31 (assumming this is MD, chance to get 'will')

Source: Figure 8.12 in Jurafsky & Martin [chapter 8]

Standard algorithms for POS tagging Supervised Machine Learning Algorithms:

- - Hidden Markov Models
 - Conditional Random Fields (CRF)/ Maximum Entropy Markov Models (MEMM) Neural sequence models (RNNs or Transformers)

 - Large Language Models (like BERT)
- All required a hand-labeled training set, equal performance (97%) on English)
- All make use of information sources we discussed

Adapted from: Jurafsky & Martin [chapter 8 PPT]

SpaCy: Introduction

NLTK is extremely good for teaching and research

• Lots of different algorithms for different purposes

SpaCy is designed for application and production

- Text is fed through an NLP pipeline
- What comes out is different components of NLP processes

In Terminal (Mac):

[NAME]@[NAME] ~ % conda install -c conda-forge spacy [NAME]@[NAME] ~ % python -m spacy download en_core_web_sm

In Anaconda Prompt (Windows):

c:\Users\[NAME] conda install -c conda-forge spacy c:\Users\[NAME] python -m spacy download en_core_web_sm

SpaCy: Installation

In English, there are four pre-trained pipeline models

- en core web sm [small model, 13 MB]
- en_core_web_md [medium sized model, 44 MB]
- en core web lg [large model, 742 MB]
- en_core_web_trf [Transformer based model, 438 MB]

NOTE: SpaCy provides data sources each model was trained on on its <u>website</u>

SpaCy: Introduction

A text is first tokenized before being processed through a pipeline

Adapted from: Spacy's website

These are the first few steps you must do:

#1 Import SpaCy import spacy # #2 Load the English model into nlp object nlp = spacy.load("en_core_web_sm") # #3 Process a text doc = nlp("This is an example sentence.") # Swap #3 with text file with open('ABC.txt') as f: $txt = f_read()$ doc = nlp(txt)

Code 8.3

Now that we have a Document (Doc) object, what's next?

Name	Description	Cr
tagger	Part-of-speech tagger	То
parser	Dependency parser	To Dc
ner	Named entity recognizer	Dc

eates

- ken.tag, Token.pos
- ken.dep, Token.head, Doc.sents, oc.noun_chunks
- oc.ents, Token.ent_iob, Token.ent_type

Now that we have a Document (Doc) object, what's next?

Print indices, tokens, and tags
[tok.i for tok in doc]
[tok.text for tok in doc]
[tok.lemma_ for tok in doc]
[tok.pos_ for tok in doc]
[tok.tag_ for tok in doc]

for tok in doc:
 print(tok.i, tok.text, tok.pos_, tok_tag_)

If you need help
spacy.explain("DET")
spacy.explain("JJ")

Code 8.4

Writing your own FreqDist

Previously, we relied on NLTK's FreqDist() to get frequency counts. It's time for our own version!

from collections import defaultdict

Create a dict; use default value for unknown key pos_ct = defaultdict(int)

Let's check: print(pos_ct["DET"])

Code 8.5

Writing your own FreqDist

Previously, we relied on NLTK's FreqDist() to get frequency counts. It's time for our own version!

for pos in [tok.pos_ for tok in doc]: $pos_ct[pos] += 1$

To select tags and counts [(t, c) for (t, c) in pos_ct.items()]

for t, c in pos_ct.items(): print(t, "\t", c)

You can use .items(), .keys(), .values()

Code 8.5 [Continue]

Our plan next week...

- Parsing, Context-Free Grammar (CFG), and Treebank
- Readings
 - J & M 3rd edition, Chapter 12
 - NLTK 7.4.2 Tree

