LG 467 Computers In Linguistics

[1-2021] Topic 5: POS tagging

Sakol Suethanapornkul

R eXo,

mailto:suesakol@staff.tu.ac.th
https://github.com/suesakol
https://sakol-suethana.netlify.app

Previously...

POS tagging = assigning a part of speech to each word in a text

Y1 Y2 Y3 Y4 V5
NOUN AUX VERB DET NOUN

[R R

Part of speech tagger

Janet will back the bill

X1 X2 X3 X4 X5

2 Adapted from: Jurafsky & Martin [chapter 8 PPT]

https://web.stanford.edu/~jurafsky/slp3/slides/8_POSNER_intro_May_6_2021.pdf

Previously...

Tag Description Example Tag Description Example Tag Description Example

CC coord. conj. and, but, or NNP proper noun, sing. IBM TO “to” to

CD cardinal number one, two NNPS proper noun, plu. Carolinas UH interjection ah, oops

DT determiner a, the NNS noun, plural llamas VB verb base eat

EX existential ‘there’ there PDT predeterminer all, both VBD verb past tense ate

FW foreign word mea culpa POS possessive ending s VBG verb gerund eating

IN preposition/ of, in, by PRP personal pronoun 1, you, he VBN verb past partici- eaten
subordin-con] ple

JJ adjective yellow PRP$ possess. pronoun your, one’s VBP verbnon-3sg-pr eat

JJR comparative adj bigger RB adverb quickly VBZ verb 3sg pres eats

JJS superlative adj wildest RBR comparative adv faster WDT wh-determ. which, that

LS listitem marker I, 2, One RBS superlatv. adv fastest WP wh-pronoun what, who

MD modal can, should RP particle up, off WP$ wh-possess. whose

NN sing or mass noun [lama SYM symbol +,%, & WRB wh-adverb how, where

3 Source: Figure 8.2 in Jurafsky & Martin [chapter 8]

Previously...

An off-the-shelf tagger is available for English:

| | Code 7.1
from nltk import pos_tag, word_tokenize

text = "John's big 1dea 1isn't all that bad.™
token = word tokenize(text)

pos = pos_tag(token)

print(pos)

Question: What tagset is this?

POS tagging in English

Tag the following sentences with the PTB tags:

1. The/ quick/ brown/ fox/ jumps/ over/
the/ lazy/ dog/ ./

2. A/ woman/ needs/ a/ man/ like/
a/ fish/ needs/ a/ bicycle/ ./ *

5 NOTE: * The phrase is a famous feminist slogan coined by Irina Dunn

POS tagging in English

Question: Some things aren't right. What are they?

| | Code 8.1
from nltk import pos_tag, word_tokenize

txtl = "The quick brown fox jumps over the lazy dog."
txt2 = "A woman needs a man like a fish needs a
bicycle."

pos_tag(word_tokenize(txtl))
pos_tag(word_tokenize(txt2))

POS tagging in English

Question: Some things aren't right. What are they?

Code 8.1
pos_tag(word_tokenize(txtl)) ///

("brown', 'NN'), (‘fox', 'NN'),

('The', 'DT'), ('qu1ck' 'JJ]'),
' , (! '), ('the', 'DT'), ('lazy', '3J]1'),

jumps', 'VBZ') over', 'IN

[
(
(dogl, INNI), (o I |)]

A', 'DT'), ('woman', 'NN')
man', 'NN'), ('like', 'IN')

poS_ tag(word_ tokenlze(tth))
[("A , eds', 'vBz'), ('a', 'DT'),
(' , y
('needs', 'VvBZ'), ('a', 'DT'), (L

he
a' 'DT), (° flsh' JJ'), &—
blcycle , 'NN'), ('.', '".")]

POS tagging in English

Roughly 85% of word types aren't ambiguous

« Janet is always NNP, hesitantly is always RB

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:

Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous (2+ tags) 711,780 (85%) 786,646 (67%)

8 Source: Figure 8.4 in Jurafsky & Martin [chapter 8]

POS tagging in English

But those 15% ambiguous words tend to be common words
» ~60% of word tokens are ambiguous
- For instance, take the word back
« earnings growth took a back/ seat
 a small building in the back/
. a clear majority of senators back/ the bill
- enable the country to buy back/ debt

| was twenty-one back/ then

9 Adapted from: Jurafsky & Martin [chapter 8 PPT]

https://web.stanford.edu/~jurafsky/slp3/slides/8_POSNER_intro_May_6_2021.pdf

Sources of information for POS tagging

Let's use a more extreme example:

| | | Code 8.2
pos_tag(word_tokenize("A man needs a woman like a fish

needs water."))

#L('A', 'DT'), ('man' 'NN'), ('needs', 'VBZ'),
(‘a', 'DT'), (' woman 'NN'), ('like', "IN'),
(‘a', 'DT'), ('fish', 'JJ'), ("needs', ‘NNS'),
('water', 'NN'), (' .', ‘. ')]

Question: Which words are mis-tagged?

10

Sources of information for POS tagging

It seems like the following is probably true in NLTK's training data:
. prior probabilities of words/tags
« brown is usually NN, i.e., p(NN) > p(JJ)
« conditional probabilities of sequences
» JJ usually follows IN+DT (e.g., he’s in/IN the next/JJ room)
« p(JJ|IN, DT) > p(NNI|IN, DT)

» (morphology and wordshape [prefix, suffix, capitalization])

1

Language models as FSAs

We can model a sequence using a weighted bigram automaton

 Longer contexts possible as e

3%

"complex" states
- Each transition depends on g of 8 2
previous state
(= s
the 15% @ 10%
5%

12

Hidden Markov Models (HMMs)

But this weighted bigram automaton is for words. How about
hidden categories like POS?

Suppose we want to predict p(NN|JJ)

« Markov assumption probability of NN at this point depends on
previous word being JJ

» But typically, we have: the large brown fox....

« We don't actually know for sure if 'brown' is JJ

13

Hidden Markov Models (HMMs)

We need to:
« estimate likelihood of chain: DT JJ NN NN....?
« Do so for every conceivable chain

» Find most likely one....without running out of memory!

HMM is in fact a weighted FSA

14

Hidden Markov Models (HMMs)

The HMM definition comprises:
¢« V=Vi... W
« Q=q1, ... gn (9o, OF)
« A=a1, a2, ... anl... @nn
« O=<0y,...0T>
B = Dbi(oy)

15

Hidden Markov Models (HMMs)

The POS tagging task maps directly to the HMM definition:
» \V: words of the English language

- Q: the parts of speech (state: DT, state: NN, etc.)
 A: the probability of NN given DT

» O: the text to be tagged <wy, ... Wp>
 B: the probability of the given DT, i.e., p(the|DT)

16

Transition probabilities (A):

Hidden Markov Models (HMMs)

NNP MD VB JJ NN RB DT
<5> 0.2767 0.0006 0.0031 0.0453 0.0449 0.0510 0.2026
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 0.0090 0.0025
MD 0.0008 0.0002 0.0005 0.0008 0.1698 0.0041
VB 0.0322 0.0005 $0.0050 0.0837 0.0615 0.0514 0.2231
JJ 0.0366 0.0004 [0.0001 0.0733 0.4509 0.0036 0.0036
NN 0.0096 0.0176 | 0.0014 0.0086 0.1216 0.0177 0.0068
RB 0.0068 0.0102(0.1011 0.1012 0.0120 0.0728 0.0479
DT 0.1147 0.0021| 0.0002 0.2157 0.4744 0.0102 0.0017

p(VB|MD) = 0.7968 (rows give the condition)

17

Source: Figure 8.12 in Jurafsky & Martin [chapter 8]

Hidden Markov Models (HMMs)

Emission probabilities (B):

Janet will back the bill
NNP 0.000032 O 0 0.000048 0
MD 0 0.308431 O 0 0
VB 0 0.000028 0.000672 0 0.000028
JJ 0 0 0.000340 O 0
NN 0 0.000200 0.000223 0 0.002337
RB 0 0 0.010446 O 0
DT 0 0 0 0.506099 0O

p(willlIMD) = 0.31 (assumming this is MD, chance to get 'will')

18 Source: Figure 8.12 in Jurafsky & Martin [chapter 8]

19

Standard algorithms for POS tagging

Supervised Machine Learning Algorithms:

« Hidden Markov Models
« Conditional Random Fields (CRF)/ Maximum Entropy Markov Models (MEMM)
« Neural sequence models (RNNs or Transformers)

» Large Language Models (like BERT)

All required a hand-labeled training set, equal performance (97%
on English)

All make use of information sources we discussed

Adapted from: Jurafsky & Martin [chapter 8 PPT]

https://web.stanford.edu/~jurafsky/slp3/slides/8_POSNER_intro_May_6_2021.pdf

SpaCy

SpaCy: Introduction

NLTK is extremely good for teaching and research
 Lots of different algorithms for different purposes
SpaCy is designed for application and production
» Text is fed through an NLP pipeline

« What comes out is different components of NLP processes

21

SpaCy: Installation

In Terminal (Mac):

([NAME]@[NAME] ~ % conda 1nstall —-c conda-forge spacy
[INAME]@ [NAME] ~ % python -m spacy download en_core_web sm

_

In Anaconda Prompt (Windows):

-
c:\Users\ [NAME] conda install -c conda-forge spacy

Lc:\Users\[NAME] python —m spacy download en_core_web_ sm

22

First steps in SpaCy

In English, there are four pre-trained pipeline models
» en core web sm [small model, 13 MB]
» en core web md [medium sized model, 44 MB]
- en core web 1g [large model, 742 MB]

- en core web trf [Transformer based model, 438 MB]

NOTE: SpaCy provides data sources each model was trained on on its website

23

https://spacy.io/models/en

SpaCy: Introduction

A text is first tokenized before being processed through a pipeline

m‘ _>

24 Adapted from: Spacy's website

https://spacy.io/usage/processing-pipelines

First steps in SpaCy

These are the first few steps you must do:

#1 Import SpaCy
import spacy

#2 Load the English model 1into nlp object
nlp = spacy.load(“en_core_web_sm”)

#3 Process a text
doc = nlp("This is an example sentence.”)

Swap #3 with text file
with open('ABC.txt') as fT:
txt = f.read()

doc = nlp(txt)

25

Code 8.3

First steps in SpaCy

Now that we have a Document (Doc) object, what's next?

Name |Description Creates

tagger |Part-of-speech tagger Token.tag, Token.pos

parser |Dependency parser Token.dep, Token.head, Doc.sents,
Doc.noun chunks

ner Named entity recognizer |Doc.ents, Token.ent_iob, Token.ent_type

26

First steps in SpaCy

Now that we have a Document (Doc) object, what's next?

Print 1indices, tokens, and tags
[tok.i for tok in doc]

[tok.text for tok in doc]
[tok.lemma for tok in doc]
[tok.pos_ for tok in doc]
[tok.tag_ for tok in doc]

for tok in doc:
print(tok.i, tok.text, tok.pos_, tok _tag_)

If you need help
spacy.explain("DET")
spacy.explain("JJ")

27

Code 8.4

Writing yourown FregDist

Previously, we relied on NLTK's FregDist () to get frequency
counts. It's time for our own version!

from collections 1import defaultdict

Create a dict; use default value for unknown key
pos_ct = defaultdict(int)

Let's check:
print(pos_ct["DET"])

28

Code 8.5

Writing yourown FregDist

Previously, we relied on NLTK's FregDist () to get frequency
counts. It's time for our own version!

for pos in [tok.pos_ for tok in doc]:
pos_ct[pos] += 1

To select tags and counts
[(t, c) for (t, c) in pos_ct.items()]

for t, ¢ in pos_ct.items():
print(t, "\t", c)

You can use .items(), .keys(), .values()

29

Code 8.5
[Continue]

Our plan next week...

 Parsing, Context-Free Grammar (CFG), and Treebank
- Readings

- J & M 3rd edition, Chapter 12

» NLTK 7.4.2 Tree

30

