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POS tagging = assigning a part of speech to each word in a text

Janet will back the bill

x1 x2 x3 x4 x5

Part of speech tagger

y1 y2 y3 y4 y5

NOUN NOUNAUX VERB DET

Adapted from: Jurafsky & Martin [chapter 8 PPT]

https://web.stanford.edu/~jurafsky/slp3/slides/8_POSNER_intro_May_6_2021.pdf
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An off-the-shelf tagger is available for English:

from nltk import pos_tag, word_tokenize 

text  = "John's big idea isn't all that bad." 
token = word_tokenize(text) 
pos   = pos_tag(token) 

print(pos)

Code 7.1

Question: What tagset is this?



POS tagging in English
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Tag the following sentences with the PTB tags:

The/           quick/           brown/           fox/           jumps/           over/     

the/            lazy/              dog/               ./

1.

A/           woman/           needs/           a/           man/           like/               

a/            fish/                 needs/           a/           bicycle/      ./                   *

2.

NOTE: * The phrase is a famous feminist slogan coined by Irina Dunn
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Question: Some things aren't right. What are they?

from nltk import pos_tag, word_tokenize 

txt1  = "The quick brown fox jumps over the lazy dog." 
txt2  = "A woman needs a man like a fish needs a 
bicycle." 

pos_tag(word_tokenize(txt1)) 
pos_tag(word_tokenize(txt2))

Code 8.1
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Question: Some things aren't right. What are they?

pos_tag(word_tokenize(txt1)) 

[('The', 'DT'), ('quick', 'JJ'), ('brown', 'NN'), (‘fox’, 'NN'), 
('jumps', 'VBZ'), ('over', 'IN'), ('the', 'DT'), ('lazy', 'JJ'), 
('dog', 'NN'), ('.', '.')] 

pos_tag(word_tokenize(txt2)) 
[('A', 'DT'), ('woman', 'NN'), ('needs', 'VBZ'), ('a', 'DT'), 
('man', 'NN'), ('like', 'IN'), ('a', 'DT'), ('fish', 'JJ'), 
('needs', 'VBZ'), ('a', 'DT'), ('bicycle', 'NN'), ('.', '.')]

Code 8.1
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Roughly 85% of word types aren't ambiguous 

• Janet is always NNP, hesitantly is always RB 

Source: Figure 8.4 in Jurafsky & Martin [chapter 8]
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But those 15% ambiguous words tend to be common words 

• ~60% of word tokens are ambiguous 

• For instance, take the word back 

• earnings growth took a back/JJ seat 

• a small building in the back/NN 

• a clear majority of senators back/VBP the bill  

• enable the country to buy back/RP debt 

• I was twenty-one back/RB then 
Adapted from: Jurafsky & Martin [chapter 8 PPT]

https://web.stanford.edu/~jurafsky/slp3/slides/8_POSNER_intro_May_6_2021.pdf
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pos_tag(word_tokenize("A man needs a woman like a fish 
needs water.")) 

#[('A', 'DT'), ('man', 'NN'), ('needs', 'VBZ'),     
# (‘a', 'DT'), ('woman', 'NN'), ('like', 'IN'),  
# (‘a', 'DT'), ('fish', 'JJ'), ('needs', ‘NNS'), 
# ('water', 'NN'), ('.', '.')]

Code 8.2

Let's use a more extreme example:

Question: Which words are mis-tagged?
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It seems like the following is probably true in NLTK's training data: 

• prior probabilities of words/tags 

• brown is usually NN, i.e., p(NN) > p(JJ) 

• conditional probabilities of sequences 

• JJ usually follows IN+DT (e.g., he’s in/IN the next/JJ room) 

• p(JJ|IN, DT) > p(NN|IN, DT) 

• (morphology and wordshape [prefix, suffix, capitalization])



Language models as FSAs

12

We can model a sequence using a weighted bigram automaton

• Longer contexts possible as 
"complex" states 

• Each transition depends on 
previous state



Hidden Markov Models (HMMs)
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But this weighted bigram automaton is for words. How about 
hidden categories like POS?

Suppose we want to predict p(NN|JJ) 

• Markov assumption probability of NN at this point depends on 
previous word being JJ 

• But typically, we have: the large brown fox…. 

• We don't actually know for sure if 'brown' is JJ



Hidden Markov Models (HMMs)
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We need to: 

• estimate likelihood of chain: DT JJ NN NN….? 

• Do so for every conceivable chain 

• Find most likely one….without running out of memory! 

HMM is in fact a weighted FSA



Hidden Markov Models (HMMs)
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The HMM definition comprises: 

• V = v1 …. vV 

• Q = q1, … qN (q0, qF) 

• A = a11, a12, … an1 … ann 

• O = <o1, …. oT> 

• B = bi(ot)

# input vocabulary items 

# states 

# transition prob. matrix 

# ordered observations of V 

# prob. of ot given qi



Hidden Markov Models (HMMs)
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The POS tagging task maps directly to the HMM definition: 

• V: words of the English language 

• Q: the parts of speech (state: DT, state: NN, etc.) 

• A: the probability of NN given DT 

• O: the text to be tagged <w1, … wn> 

• B: the probability of the given DT, i.e., p(the|DT)



Hidden Markov Models (HMMs)
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Transition probabilities (A):

Source: Figure 8.12 in Jurafsky & Martin [chapter 8]

p(VB|MD) = 0.7968 (rows give the condition)



Hidden Markov Models (HMMs)
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Emission probabilities (B):

Source: Figure 8.12 in Jurafsky & Martin [chapter 8]

p(will|MD) = 0.31 (assumming this is MD, chance to get 'will')



Standard algorithms for POS tagging
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• Supervised Machine Learning Algorithms: 
• Hidden Markov Models 

• Conditional Random Fields (CRF)/ Maximum Entropy Markov Models (MEMM) 

• Neural sequence models (RNNs or Transformers) 

• Large Language Models (like BERT) 

• All required a hand-labeled training set, equal performance (97% 
on English) 

• All make use of information sources we discussed

Adapted from: Jurafsky & Martin [chapter 8 PPT]

https://web.stanford.edu/~jurafsky/slp3/slides/8_POSNER_intro_May_6_2021.pdf
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NLTK is extremely good for teaching and research  

• Lots of different algorithms for different purposes  

SpaCy is designed for application and production 

• Text is fed through an NLP pipeline 

• What comes out is different components of NLP processes



SpaCy: Installation
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[NAME]@[NAME] ~ % conda install -c conda-forge spacy 
[NAME]@[NAME] ~ % python -m spacy download en_core_web_sm

In Terminal (Mac):

In Anaconda Prompt (Windows):

c:\Users\[NAME] conda install -c conda-forge spacy 
c:\Users\[NAME] python -m spacy download en_core_web_sm



First steps in SpaCy
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In English, there are four pre-trained pipeline models 

• en_core_web_sm    [small model, 13 MB] 

• en_core_web_md    [medium sized model, 44 MB] 

• en_core_web_lg    [large model, 742 MB] 

• en_core_web_trf [Transformer based model, 438 MB]

NOTE: SpaCy provides data sources each model was trained on on its website

https://spacy.io/models/en


SpaCy: Introduction
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A text is first tokenized before being processed through a pipeline

Text Tokenizer Tagger Parser NER

NLP

… DOC

Adapted from: Spacy's website

https://spacy.io/usage/processing-pipelines
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These are the first few steps you must do:

# #1 Import SpaCy 
import spacy 
# #2 Load the English model into nlp object 
nlp = spacy.load(“en_core_web_sm”) 
# #3 Process a text 
doc = nlp("This is an example sentence.”) 
# Swap #3 with text file 
with open('ABC.txt') as f: 
    txt = f.read() 
doc = nlp(txt)

Code 8.3



First steps in SpaCy
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Now that we have a Document (Doc) object, what’s next?

Name Description Creates

tagger Part-of-speech tagger Token.tag, Token.pos

parser Dependency parser Token.dep, Token.head, Doc.sents, 
Doc.noun_chunks

ner Named entity recognizer Doc.ents, Token.ent_iob, Token.ent_type



First steps in SpaCy
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Now that we have a Document (Doc) object, what’s next?

# Print indices, tokens, and tags 
[tok.i for tok in doc] 
[tok.text for tok in doc] 
[tok.lemma_ for tok in doc] 
[tok.pos_ for tok in doc] 
[tok.tag_ for tok in doc] 
for tok in doc: 
    print(tok.i, tok.text, tok.pos_, tok_tag_) 
# If you need help 
spacy.explain("DET") 
spacy.explain("JJ")

Code 8.4
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Previously, we relied on NLTK's FreqDist() to get frequency 
counts. It's time for our own version!

from collections import defaultdict 

# Create a dict; use default value for unknown key 
pos_ct = defaultdict(int) 

# Let's check: 
print(pos_ct["DET"])

Code 8.5



Writing your own FreqDist
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Previously, we relied on NLTK's FreqDist() to get frequency 
counts. It's time for our own version!

for pos in [tok.pos_ for tok in doc]: 
    pos_ct[pos] += 1 

# To select tags and counts  
[(t, c) for (t, c) in pos_ct.items()] 

for t, c in pos_ct.items(): 
    print(t, "\t", c) 

# You can use .items(), .keys(), .values()

Code 8.5
[Continue]



Our plan next week…
• Parsing, Context-Free Grammar (CFG), and Treebank 

• Readings 

• J & M 3rd edition, Chapter 12 

• NLTK 7.4.2 Tree

30


