
LG 467 Computers in Linguistics

[1-2021] Topic 5: POS tagging

Sakol Suethanapornkul

! ! "

mailto:suesakol@staff.tu.ac.th
https://github.com/suesakol
https://sakol-suethana.netlify.app

Previously…

2

POS tagging = assigning a part of speech to each word in a text

Janet will back the bill

x1 x2 x3 x4 x5

Part of speech tagger

y1 y2 y3 y4 y5

NOUN NOUNAUX VERB DET

Adapted from: Jurafsky & Martin [chapter 8 PPT]

https://web.stanford.edu/~jurafsky/slp3/slides/8_POSNER_intro_May_6_2021.pdf

Previously…

3 Source: Figure 8.2 in Jurafsky & Martin [chapter 8]

Previously…

4

An off-the-shelf tagger is available for English:

from nltk import pos_tag, word_tokenize

text = "John's big idea isn't all that bad."
token = word_tokenize(text)
pos = pos_tag(token)

print(pos)

Code 7.1

Question: What tagset is this?

POS tagging in English

5

Tag the following sentences with the PTB tags:

The/ quick/ brown/ fox/ jumps/ over/

the/ lazy/ dog/ ./

1.

A/ woman/ needs/ a/ man/ like/

a/ fish/ needs/ a/ bicycle/ ./ *

2.

NOTE: * The phrase is a famous feminist slogan coined by Irina Dunn

POS tagging in English

6

Question: Some things aren't right. What are they?

from nltk import pos_tag, word_tokenize

txt1 = "The quick brown fox jumps over the lazy dog."
txt2 = "A woman needs a man like a fish needs a
bicycle."

pos_tag(word_tokenize(txt1))
pos_tag(word_tokenize(txt2))

Code 8.1

POS tagging in English

7

Question: Some things aren't right. What are they?

pos_tag(word_tokenize(txt1))

[('The', 'DT'), ('quick', 'JJ'), ('brown', 'NN'), (‘fox’, 'NN'),
('jumps', 'VBZ'), ('over', 'IN'), ('the', 'DT'), ('lazy', 'JJ'),
('dog', 'NN'), ('.', '.')]

pos_tag(word_tokenize(txt2))
[('A', 'DT'), ('woman', 'NN'), ('needs', 'VBZ'), ('a', 'DT'),
('man', 'NN'), ('like', 'IN'), ('a', 'DT'), ('fish', 'JJ'),
('needs', 'VBZ'), ('a', 'DT'), ('bicycle', 'NN'), ('.', '.')]

Code 8.1

POS tagging in English

8

Roughly 85% of word types aren't ambiguous

• Janet is always NNP, hesitantly is always RB

Source: Figure 8.4 in Jurafsky & Martin [chapter 8]

POS tagging in English

9

But those 15% ambiguous words tend to be common words

• ~60% of word tokens are ambiguous

• For instance, take the word back

• earnings growth took a back/JJ seat

• a small building in the back/NN

• a clear majority of senators back/VBP the bill

• enable the country to buy back/RP debt

• I was twenty-one back/RB then
Adapted from: Jurafsky & Martin [chapter 8 PPT]

https://web.stanford.edu/~jurafsky/slp3/slides/8_POSNER_intro_May_6_2021.pdf

Sources of information for POS tagging

10

pos_tag(word_tokenize("A man needs a woman like a fish
needs water."))

#[('A', 'DT'), ('man', 'NN'), ('needs', 'VBZ'),
(‘a', 'DT'), ('woman', 'NN'), ('like', 'IN'),
(‘a', 'DT'), ('fish', 'JJ'), ('needs', ‘NNS'),
('water', 'NN'), ('.', '.')]

Code 8.2

Let's use a more extreme example:

Question: Which words are mis-tagged?

Sources of information for POS tagging

11

It seems like the following is probably true in NLTK's training data:

• prior probabilities of words/tags

• brown is usually NN, i.e., p(NN) > p(JJ)

• conditional probabilities of sequences

• JJ usually follows IN+DT (e.g., he’s in/IN the next/JJ room)

• p(JJ|IN, DT) > p(NN|IN, DT)

• (morphology and wordshape [prefix, suffix, capitalization])

Language models as FSAs

12

We can model a sequence using a weighted bigram automaton

• Longer contexts possible as
"complex" states

• Each transition depends on
previous state

Hidden Markov Models (HMMs)

13

But this weighted bigram automaton is for words. How about
hidden categories like POS?

Suppose we want to predict p(NN|JJ)

• Markov assumption probability of NN at this point depends on
previous word being JJ

• But typically, we have: the large brown fox….

• We don't actually know for sure if 'brown' is JJ

Hidden Markov Models (HMMs)

14

We need to:

• estimate likelihood of chain: DT JJ NN NN….?

• Do so for every conceivable chain

• Find most likely one….without running out of memory!

HMM is in fact a weighted FSA

Hidden Markov Models (HMMs)

15

The HMM definition comprises:

• V = v1 …. vV

• Q = q1, … qN (q0, qF)

• A = a11, a12, … an1 … ann

• O = <o1, …. oT>

• B = bi(ot)

input vocabulary items

states

transition prob. matrix

ordered observations of V

prob. of ot given qi

Hidden Markov Models (HMMs)

16

The POS tagging task maps directly to the HMM definition:

• V: words of the English language

• Q: the parts of speech (state: DT, state: NN, etc.)

• A: the probability of NN given DT

• O: the text to be tagged <w1, … wn>

• B: the probability of the given DT, i.e., p(the|DT)

Hidden Markov Models (HMMs)

17

Transition probabilities (A):

Source: Figure 8.12 in Jurafsky & Martin [chapter 8]

p(VB|MD) = 0.7968 (rows give the condition)

Hidden Markov Models (HMMs)

18

Emission probabilities (B):

Source: Figure 8.12 in Jurafsky & Martin [chapter 8]

p(will|MD) = 0.31 (assumming this is MD, chance to get 'will')

Standard algorithms for POS tagging

19

• Supervised Machine Learning Algorithms:
• Hidden Markov Models

• Conditional Random Fields (CRF)/ Maximum Entropy Markov Models (MEMM)

• Neural sequence models (RNNs or Transformers)

• Large Language Models (like BERT)

• All required a hand-labeled training set, equal performance (97%
on English)

• All make use of information sources we discussed

Adapted from: Jurafsky & Martin [chapter 8 PPT]

https://web.stanford.edu/~jurafsky/slp3/slides/8_POSNER_intro_May_6_2021.pdf

SpaCy

20

SpaCy: Introduction

21

NLTK is extremely good for teaching and research

• Lots of different algorithms for different purposes

SpaCy is designed for application and production

• Text is fed through an NLP pipeline

• What comes out is different components of NLP processes

SpaCy: Installation

22

[NAME]@[NAME] ~ % conda install -c conda-forge spacy
[NAME]@[NAME] ~ % python -m spacy download en_core_web_sm

In Terminal (Mac):

In Anaconda Prompt (Windows):

c:\Users\[NAME] conda install -c conda-forge spacy
c:\Users\[NAME] python -m spacy download en_core_web_sm

First steps in SpaCy

23

In English, there are four pre-trained pipeline models

• en_core_web_sm [small model, 13 MB]

• en_core_web_md [medium sized model, 44 MB]

• en_core_web_lg [large model, 742 MB]

• en_core_web_trf [Transformer based model, 438 MB]

NOTE: SpaCy provides data sources each model was trained on on its website

https://spacy.io/models/en

SpaCy: Introduction

24

A text is first tokenized before being processed through a pipeline

Text Tokenizer Tagger Parser NER

NLP

… DOC

Adapted from: Spacy's website

https://spacy.io/usage/processing-pipelines

First steps in SpaCy

25

These are the first few steps you must do:

#1 Import SpaCy
import spacy
#2 Load the English model into nlp object
nlp = spacy.load(“en_core_web_sm”)
#3 Process a text
doc = nlp("This is an example sentence.”)
Swap #3 with text file
with open('ABC.txt') as f:
 txt = f.read()
doc = nlp(txt)

Code 8.3

First steps in SpaCy

26

Now that we have a Document (Doc) object, what’s next?

Name Description Creates

tagger Part-of-speech tagger Token.tag, Token.pos

parser Dependency parser Token.dep, Token.head, Doc.sents,
Doc.noun_chunks

ner Named entity recognizer Doc.ents, Token.ent_iob, Token.ent_type

First steps in SpaCy

27

Now that we have a Document (Doc) object, what’s next?

Print indices, tokens, and tags
[tok.i for tok in doc]
[tok.text for tok in doc]
[tok.lemma_ for tok in doc]
[tok.pos_ for tok in doc]
[tok.tag_ for tok in doc]
for tok in doc:
 print(tok.i, tok.text, tok.pos_, tok_tag_)
If you need help
spacy.explain("DET")
spacy.explain("JJ")

Code 8.4

Writing your own FreqDist

28

Previously, we relied on NLTK's FreqDist() to get frequency
counts. It's time for our own version!

from collections import defaultdict

Create a dict; use default value for unknown key
pos_ct = defaultdict(int)

Let's check:
print(pos_ct["DET"])

Code 8.5

Writing your own FreqDist

29

Previously, we relied on NLTK's FreqDist() to get frequency
counts. It's time for our own version!

for pos in [tok.pos_ for tok in doc]:
 pos_ct[pos] += 1

To select tags and counts
[(t, c) for (t, c) in pos_ct.items()]

for t, c in pos_ct.items():
 print(t, "\t", c)

You can use .items(), .keys(), .values()

Code 8.5
[Continue]

Our plan next week…
• Parsing, Context-Free Grammar (CFG), and Treebank

• Readings

• J & M 3rd edition, Chapter 12

• NLTK 7.4.2 Tree

30

